

1

2

Table of Contents
Basic Static Malware Analysis ... 6

Fundamentals of Static Analysis .. 6

Basic File Properties and Signatures ... 9

String Analysis and Pattern Matching ... 12

Reverse Engineering Tools and Techniques ... 15

Little and Big Endian .. 15

Portable Executable (PE) Format... 17

DLL Files in Windows ... 21

Hex Editors (HxD) .. 24

PE Analysis Tools (PEiD, CFF Explorer, PEview) .. 27

Windows Common Processes ... 31

Svchost.exe .. 31

Explorer.exe ... 33

Rundll32.exe .. 35

Cscript.exe ... 36

Regsvr32.exe ... 37

Dllhost.exe ... 38

Conhost.exe ... 39

Certutil.exe .. 40

Csrss.exe .. 41

Winlogon.exe .. 42

Services.exe ... 43

Lsass.exe .. 44

Wscript.exe .. 45

Wuauclt.exe .. 46

MsMpEng.exe .. 46

Vssadmin.exe ... 48

Smss.exe .. 48

Mshta.exe .. 49

System ... 50

Basic Dynamic Malware Analysis .. 51

Introduction to Dynamic Malware Analysis .. 51

Sandbox Analysis ... 53

Analyzing Process Behavior ... 55

Process Monitor .. 55

3

Process Explorer .. 60

Running Malware Samples in a Sandbox .. 65

System-Level Changes ... 66

Regshot ... 67

Autoruns.. 70

ProcDot ... 74

Network Traffic Analysis for Malware Analysis ... 78

Understanding Network Traffic ... 78

Wireshark .. 79

TCPDump ... 91

NetworkMiner ... 93

SSL/TLS Traffic Decryption and Inspection .. 95

Introduction to SSL/TLS ... 95

SSL/TLS Handshake Process .. 96

Understanding SSL/TLS Encryption Algorithms... 96

SSL/TLS Decryption with Wireshark .. 98

SSL/TLS Decryption with SSLsplit .. 101

SSL/TLS Decryption for Incident Response and Forensics... 107

Memory Analysis for Malware Analysis .. 108

Overview of Memory Analysis .. 108

Memory Acquisition Techniques ... 109

Volatility .. 110

Volatility 3 ... 111

Volatility 2.6 .. 120

Understanding Memory Forensics .. 132

Basics of Malware and Its Impact on Memory ... 133

Detecting Malware through Memory Analysis ... 134

Interpreting Memory Artifacts in Malware Analysis ... 135

Intrusion Detection ... 136

Command and Control (C2) Infrastructure Analysis ... 138

Common Patterns of Malicious Network Traffic ... 139

Deep Packet Inspection for Malware Analysis .. 139

Signature-based vs Anomaly-based Detection ... 140

Evasion Techniques used by Malware in Network Traffic ... 141

Network Forensics: Post-Malware Infection Analysis ... 143

Proactive Defense Against Malware and APTs .. 143

4

Role of Darknet Traffic Analysis in Malware Detection ... 144

Introduction to YARA ... 146

Use of Heuristics in Memory-based Malware Detection .. 149

Advanced Static Malware Analysis .. 151

Understanding the PE (Portable Executable) Files .. 151

Understanding Packers .. 159

Binary .. 160

Digital Sizes.. 160

Understanding Binary Numbers .. 161

Converting Decimal to Binary ... 162

Converting Text to Binary .. 163

Practical Applications of Binary Conversion .. 165

Hex Conversion ... 166

Introduction to Hexadecimal Numbers ... 166

Converting Hex to Binary .. 167

Converting Between Decimal, Binary, and Hexadecimal .. 168

Real-world Use Cases of Hexadecimal Conversion ... 170

Disassembly and Decompilation ... 171

IDA ... 181

Introduction to IDA ... 181

Malware Analysis using IDA .. 185

Setting up the IDA ... 191

Features of IDA .. 195

Keyboard Shortcuts in IDA .. 199

Debugging with IDA .. 200

Identifying Windows Malware Characteristics.. 202

The Stack in IDA... 204

Advanced Reverse Engineering ... 205

Code Obfuscation and Deobfuscation .. 218

Malware Classification and Attribution ... 222

Advanced Dynamic Malware Analysis .. 228

Advanced Behavioral Analysis ... 229

Anti-Analysis Techniques and Countermeasures .. 229

Timeline and Correlation Analysis ... 232

Malware Persistence Mechanisms .. 233

OllyDbg .. 236

5

Introduction to OllyDbg .. 236

Dynamic Analysis with OllyDbg ... 241

Anti-Debugging and Anti-Analysis Techniques .. 243

Reverse Engineering and Code Analysis .. 246

Malware Debugging Tricks and Tips .. 248

OllyDbg Extensions and Plugins .. 250

Keyboard Shortcuts in OllyDbg ... 251

Script-based Malware Analysis ... 252

Malicious Document Analysis ... 253

Analyzing Malicious Microsoft Office and PDF Documents .. 253

Extracting and Analyzing Embedded Scripts and Macros ... 254

Mitigating Document-Based Attacks and Exploits .. 255

Advanced Script Analysis Techniques ... 256

Identifying and Analyzing Script-Based Exploits and Shellcode .. 256

Automation of Script-Based Malware Analysis ... 257

6

Basic Static Malware Analysis

Fundamentals of Static Analysis
Malware, short for malicious software, refers to any software specifically designed to infiltrate,
damage, or disrupt computer systems. The primary goal of malware is to compromise sensitive
information, disrupt operations, or gain unauthorized access.

Types of Malware

There are various types of malware, each with its own characteristics and objectives. The most
common types include:

▪ Viruses: Malicious programs that self-replicate by attaching themselves to other files or
programs.

▪ Worms: Standalone programs that spread across networks and exploit vulnerabilities.
▪ Trojans: Disguised as legitimate software, these programs create backdoors, allowing

unauthorized access.
▪ Ransomware: Encrypts the victim's data and demands payment for its release.
▪ Spyware: Covertly collects and transmits user data, such as keystrokes or browsing history, to

a remote server.
▪ Adware: Delivers unwanted ads and can redirect browser searches or track user activity.

Malware Analysis Techniques

Two primary techniques are used to analyze malware: static analysis and dynamic analysis. This
chapter will focus on static analysis, which examines the malware without executing it.

Static Analysis

Static analysis involves analyzing a malware sample's code, structure, and resources without running
the malicious program. This technique is useful for quickly gathering information about the malware,
such as its functionality and possible infection vectors. Some common static analysis methods include:

• Signature-Based Detection
This method involves comparing the characteristics or "signatures" of a malware sample
against a database of known malware signatures. If a match is found, the sample is flagged as
malicious. Signature-based detection is effective for identifying known malware but may
struggle with detecting new or modified variants.

• Heuristic Analysis
Heuristic analysis involves identifying potential threats or suspicious behavior based on
patterns, rules, and algorithms. It helps in detecting unknown or previously unseen malware
by analyzing code structures, file characteristics, or communication protocols.

• File Structure Analysis
This method focuses on examining the structure of a malware sample. It involves analyzing
the layout and organization of files within the malware, including header information,
sections, resources, and metadata. File structure analysis can provide insights into the
purpose, functionality, and potential infection vectors of the malware.

7

• Strings Analysis
This method involves extracting and analyzing strings (sequences of characters) present in a
malware sample. By examining these strings, analysts can uncover clues about the malware's
behavior, communication protocols, command-and-control servers, or encryption
mechanisms.

• Disassembly
Disassembly refers to the process of converting machine code (binary instructions) back into
assembly code, which is more human-readable. By disassembling a malware sample, analysts
can study the instructions and logic flow, enabling them to understand the functionality,
potential vulnerabilities, or anti-analysis techniques employed by the malware.

Hands-on Example
Strings analysis involves examining the human-readable text in a malware sample. This text can reveal
valuable information, such as URLs, IP addresses, or suspicious function names.

Exercise: Strings Analysis

1. Download a sample malware file (e.g., a known virus or a Trojan) from a reputable source,
such as the "TheZoo" or the "VirusShare" project. Ensure you are working in a secure and
isolated environment, such as a virtual machine.

2. Install the 'strings' utility, which is available on most Unix-based systems, or use a similar tool
on Windows, such as 'Strings' from Sysinternals Suite.

3. Run the 'strings' command on the malware sample:

strings sample_malware.bin > output.txt.

8

This command will generate a text file containing all human-readable strings in the sample.

4. Analyze the 'output.txt' file for any suspicious or interesting strings, such as URLs, IP addresses,
or function names related to malicious activity.

Windows Command 'findstr'
findstr is a command-line utility in Windows, which is used for searching patterns of text string in files.
In the context of malware analysis, it is helpful to identify suspicious or known malicious strings in
binary files.

Basic Syntax:
findstr [options] [string] [file_name]

Key Options:

/R Use regular expressions to find strings.
/I Ignore case while searching.
/L Search for a literal string (default).
/N Show line numbers.
/S Searches in the current directory and all subdirectories.
/P Skip files with non-printable characters.
/M Print only the file name if a file contains a match.

Examples of findstr Usage in Malware Analysis:

1. Find a literal string in a file:

This command will search for the case-insensitive string "malware-string" in the file "malware-file.exe"
and display the file name if a match is found.

9

2. Use multiple strings to search in a file:

This command will search for the strings "user" or "http" in the file.

Note: findstr can handle text-based files effectively, but may have limitations with binary files. You may
need to use other tools or techniques for advanced malware string analysis.

For a complete list of options and more complex usage, consult the official documentation or use
findstr /? in the command prompt.

Basic File Properties and Signatures
Understanding basic file properties and signatures is essential for identifying and analyzing different
file formats and detecting malicious files.

Basic File Properties

Every file contains various properties that can provide valuable information about the file's content,
format, and origin. Some common properties include:

▪ File name and extension: The file's name and extension can give an initial clue about its format
and purpose.

▪ File size: The size of the file can help determine its complexity and the amount of data it
contains.

▪ Metadata: Some file types contain metadata, which can include information about the file's
creation date, modification date, and author.

▪ File attributes: File attributes, such as read-only or hidden, can provide insight into the file's
intended use.

File Signatures (Magic Numbers)

A file signature, also known as a magic number, is a unique sequence of bytes found at the beginning
of a file, which identifies its format. File signatures are essential for distinguishing file types and
detecting potentially malicious files.

10

Hands-on Example
Understanding basic file properties and signatures is crucial for working with various file formats and
detecting malicious files. To identify a file's signature, you can use a hex editor to examine the first few
bytes of the file. The following exercise will guide you through this process.

Exercise: Identifying File Signatures

1. Download a few different file types (e.g., a .jpg image, a .pdf document, and a .zip archive)
from a trusted source.

2. Install a hex editor, such as HxD for Windows or Hex Fiend for macOS.

3. Open each file in the hex editor and examine the first few bytes. Take note of the file

signatures (magic numbers).

4. Compare the file signatures with a list of known file signatures, such as the ones available
on the "File Signatures" website or Gary Kessler's "File Signatures Table."

File signatures, also known as magic numbers, are the first few bytes of a file that are used to identify
the file format or type. Here are the file signatures for some common executable file formats:

File Extension File Signature (Hexadecimal) ASCII

.EXE 4D 5A MZ

.DLL 4D 5A MZ

.SYS 4D 5A MZ

.SCR 4D 5A MZ

1. The file signatures for .EXE, .DLL, .SYS, and .SCR files are the same because these files are all

based on the Portable Executable (PE) format, which starts with the "MZ" signature. The "MZ"
refers to Mark Zbikowski, one of the original architects working on MS-DOS.

2. .COM, .BIN, .BAT, .PIF, .JS, .VBS, .PS1 file types do not have a specific file signature as they can

vary widely based on the content of the file.

3. This table covers just the first few bytes (file signatures or magic numbers) of these file formats,
and many formats have additional structure further into the file. For example, PE files (.EXE,
.DLL, .SYS) have an additional "PE\0\0" signature starting at byte 0x80 (decimal 128).

11

4. File signatures are not a definitive way to identify a file type because they can be spoofed or
absent. Other methods, such as heuristic analysis, are often used in addition to file signatures
for file type identification.

Always remember to handle any unknown files, especially executables, with extreme care to avoid
potential malicious code execution.

Hands-on Example
A file signature scanner is a tool that can identify file types based on their signatures. In this exercise,
you will create a simple file signature scanner using Python.

Exercise: Creating a File Signature Scanner

1. Create a new Python script and name it 'file_signature_scanner.py'.

2. Define a dictionary of file signatures, with file extensions as keys and their corresponding
magic numbers as values. For example:

3. Define a function that reads the first few bytes of a file and checks if they match any of the
known file signatures:

FILE_SIGNATURES = {
 ".jpg": b'\xFF\xD8\xFF',
 ".png": b'\x89\x50\x4E\x47\x0D\x0A\x1A\x0A',
 ".gif": b'\x47\x49\x46\x38',
 ".pdf": b'\x25\x50\x44\x46',
 ".exe": b'\x4D\x5A',
 ".dll": b'\x4D\x5A'
}

def scan_file_signature(file_path):
 with open(file_path, 'rb') as file:
 file_start = file.read(8) # Reads the first 8 bytes
 for extension, signature in FILE_SIGNATURES.items():
 if file_start.startswith(signature):
 return extension
 return None

file_path = "/path_to_file" # Replace with your file path
print(f"The file {file_path} seems to be of type: {scan_file_signature(file_path)}")

12

String Analysis and Pattern Matching
String analysis and pattern matching are essential techniques for analyzing text-based data in various
file formats and detecting suspicious content or malicious code.

String Analysis

String analysis involves examining human-readable text within a file or data stream to identify valuable
information, such as URLs, IP addresses, suspicious function names, or other indicators of malicious
activity. It can also be used to extract and analyze metadata from various file types.

Pattern Matching

Pattern matching is the process of identifying specific patterns within text data, such as email
addresses, URLs, or other structured data. Regular expressions (regex) are a powerful tool for pattern
matching, enabling the search for complex patterns within strings.

Hands-on Example

Exercise: Extracting URLs from a Text File

1. Create a new Bash script named 'url_extractor.sh'.

2. Use the Bash script to extract URL.

13

Hands-on Example

Exercise: Identifying Suspicious Strings in a Binary File

1. Download a binary file or use one from a previous exercise.

2. Create a new Python script named 'suspicious_strings.py'.

3. Define a function that reads the binary file and identifies suspicious strings using a list of
keywords:

4. Define a list of suspicious keywords and use the 'find_suspicious_strings' function to search
the binary file:

Regex for Malware Analysis
Regex is a tool that can be used to analyze patterns and behaviors. All these expressions will not
necessarily apply to every situation, and some malware may avoid these patterns specifically to avoid
detection. Always use a combination of tools and techniques when analyzing malware.

Regex Basics

. Matches any character except newline
* Matches 0 or more repetitions of the preceding character
+ Matches 1 or more repetitions of the preceding character
? Matches 0 or 1 repetition of the preceding character
{n} Matches exactly n repetitions of the preceding character
{n,} Matches n or more repetitions of the preceding character
{,m} Matches up to m repetitions of the preceding character
{n,m} Matches at least n and at most m repetitions of the preceding character

import re

def scan_suspicious_strings(file_path):
 with open(file_path, 'rb') as file:
 file_content = file.read().decode()
 suspicious_strings = []
 for keyword in SUSPICIOUS_KEYWORDS:
 if re.search(rf"\b{keyword}\b", file_content, re.IGNORECASE):
 suspicious_strings.append(keyword)
 return suspicious_strings

file_path = "/path_to_file" # Replace with your file path
print(f"Suspicious strings in the file {file_path}: {scan_suspicious_strings(file_path)}")

SUSPICIOUS_KEYWORDS = [
 "password",
 "secret",
 "key",
 "admin",
 # Add more keywords as needed
]

14

[] Matches any single character in brackets
[^] Matches any single character not in brackets
^ Matches the beginning of line
$ Matches the end of line
| Either or
() Group

Common Regex Patterns in Malware Analysis

IP Address: \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b
Domain Names: ([a-z0-9]+(-[a-z0-9]+)*\.)+[a-z]{2,}
Email Addresses: [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}
URLs: http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-

F]))+
Hex Strings: \\b[0-9A-Fa-f]+\\b
Base64 Strings: (?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=|[A-Za-z0-

9+/]{4})
User-Agent Strings: Mozilla\/[0-9]\.[0-9] \(compatible; MSIE [0-9]\.[0-9]; Windows NT [0-9]\.[0-

9];
Registry Keys:

(HKLM|HKCU|HKCR|HKU|HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER|H
KEY_CLASSES_ROOT|HKEY_USERS)\\\\

Suspicious API Calls:
VirtualAlloc|VirtualProtect|CreateRemoteThread|WriteProcessMemory|Re
adProcessMemory|CreateProcess

File Path: [a-zA-Z]:\\([^\\/:*?"<>|\r\n]+\\)*[^\\/:*?"<>|\r\n]*

Flags

i: Case insensitive
g: Global search
m: Multiline search

The above patterns are simplified and may not cover all cases. Also, the patterns themselves could be
obfuscated or encoded in real-world malware samples, so more complex analysis techniques would
be needed in those situations.

15

Reverse Engineering Tools and Techniques

Little and Big Endian
Understanding endianness, which refers to the order of bytes in a digital word, is crucial for accurate
malware analysis.

Big Endian

In Big Endian format, the most significant byte (the "big end") is stored in the smallest address, with
the least significant byte stored in the largest address. For example, a four-byte integer 0x12345678
would be stored as:

▪ 0x12 at address 0
▪ 0x34 at address 1
▪ 0x56 at address 2
▪ 0x78 at address 3

Little Endian

In contrast, the Little Endian format stores the least significant byte (the "little end") at the smallest
address and the most significant byte at the largest address. Using the same four-byte integer, it would
be stored as:

▪ 0x78 at address 0
▪ 0x56 at address 1
▪ 0x34 at address 2
▪ 0x12 at address 3

Disassembly and Reverse Engineering

When disassembling and reverse engineering binary files, understanding the target system’s
endianness is essential to interpret data structures, function calls, and instruction sets correctly. For
instance, if a disassembler misinterprets the endianness of an instruction, it may disassemble the bytes
incorrectly, resulting in a completely different instruction set.

Network Traffic Analysis

In malware analysis, network traffic often needs to be analyzed. A malware sample communicating
with a Command and Control (C2) server might send data in Big Endian, also known as network byte
order. If an analyst misinterprets this data as Little Endian, the IP addresses or port numbers extracted
from the network packets could be incorrect.

x32 vs x64 in Malware Analysis

The endianness doesn’t inherently depend on whether the system is 32-bit (x32) or 64-bit (x64). Both
Little and Big Endian schemes can be used in either system. However, malware may target different
architectures, and the analyst must be aware of the endianness used in each case.

16

For instance, x86 and x86_64 CPUs (Intel and AMD CPUs) are both Little Endian. If we were to consider
a 4-byte memory address 0x12345678 on these systems, it would be stored in memory as 78 56 34 12.

In contrast, some architectures like MIPS, often found in IoT devices, can operate in both Little and Big
Endian modes.

Importance of Endianness in Malware Analysis

Understanding endianness is crucial for malware analysts to avoid misinterpreting data.
Misinterpretation may lead to incorrect conclusions, missed indicators of compromise, or failed exploit
attempts.

Cross-architecture Analysis

When analyzing malware designed for different architectures, it's essential to use emulators, virtual
machines, or sandbox environments that support the target architecture and endianness. Tools like
QEMU can emulate different CPU architectures and endianness, facilitating the analysis process.

By understanding the nuances of endianness and its implications in malware analysis, analysts can
improve their ability to dissect, reverse engineer, and develop countermeasures against malicious
software.

17

Portable Executable (PE) Format
Malware analysts frequently encounter a variety of file types when dissecting malware, and the
Portable Executable (PE) format is one of the most common. These files, which include .exe, .dll, .sys,
and others, form the backbone of the Windows operating system. As such, understanding the PE
structure is crucial for anyone involved in malware analysis or reverse engineering.

Structure of a PE file

A PE file structure is organized in a specific way. Each part of the file contains data used either by the
operating system loader or by the running program. Here is a detailed layout of a typical PE file:

• DOS Header: The DOS Header is located at the beginning of the PE file and contains
information required by the MS-DOS. The most important element here is the e_lfanew field,
which contains the offset to the PE header.

• PE Signature: This is the PE header's starting point, identified by the "PE\0\0" signature (hex:
50 45 00 00).

• COFF (Common Object File Format) Header: The Common Object File Format (COFF) header
contains basic information about the executable, such as its architecture (32-bit or 64-bit), the
size of the sections, and the time the executable was compiled. It also includes the entry point
of the program, which is crucial during malware analysis.

• PE Optional Header: Despite its name, this section is not optional for executable images. It
includes important data for the Windows OS loader, such as initial stack size, program entry
point, image base address, section alignment info, OS version, and more.

• Section Headers: Each section header describes a block of code or data in the executable,
specifying sizes, locations, and characteristics.

• Sections: These are blocks of code or data described by the section headers. Common sections
include .text (executable code), .data (global data), .rdata (read-only data), .bss (uninitialized
data), .idata (import and export data), .rsrc (resource data), and .reloc (relocation data).

PE files are often the vehicle of choice for malware on Windows. As such, understanding the various
sections of a PE file can aid malware analysts in identifying and analyzing malicious software.

1. Code Section (.text): This section usually contains the executable code. Malware analysts often
focus on this section to understand what the malware is designed to do.

2. Data Section (.data): This section contains initialized data, such as global variables. Malware

may store configuration data or decryption keys here.

3. Resource Section (.rsrc): This section contains resources used by the executable. Malware
often uses this section to store additional malicious payloads, configuration data, or even
decoy benign files.

4. Import Section (.idata): This section contains a list of DLLs and functions that the PE file
imports. Analysis of this section can reveal the functionality of the malware.

18

5. Export Section (.edata): This section contains a list of functions that the PE file exports. It's less
common in malware but can be found in malicious DLLs.

6. Relocation Section (.reloc): This section contains information needed if the file must be
relocated in memory. It's often stripped in malware to save space.

7. TLS (Thread Local Storage): Malware may use this section to store data that is unique per
thread, or to define TLS callbacks, which are functions that run before the main entry point.

8. Overlay: This is not a standard section, but data appended at the end of PE file. It's often used
by malware to store additional payloads or data.

Hands-On Example

PE Signature (4 bytes): 50 45 00 00 - This indicates the beginning of the PE file header.

COFF header:

Machine (2 bytes): 4C 01 - This is the code for Intel 386 or later processors and compatible processors.

Number of Sections (2 bytes): 0C 00 - This tells us there are 12 sections in the PE file.

Time Date Stamp (4 bytes): 85 10 5C 63 - This is a UNIX timestamp indicating the time the file was
created.

Pointer to Symbol Table (4 bytes): 00 00 00 00 - There is no symbol table associated with this PE file.

Number of Symbols (4 bytes): 00 00 00 00 - As the pointer to the symbol table is zero, this should also
be zero.

19

Size of Optional Header (2 bytes): E0 00 - This indicates the size of the optional header that follows the
COFF header.

Characteristics (2 bytes): 02 01 - This is a set of flags indicating characteristics of the PE file.

The Optional Header starts immediately after the COFF header. Here is an example of a structure of a
32-bit Optional Header:

1. Magic number (2 bytes): This is like a secret handshake, it tells the system that this file is a 32-
bit or 64-bit executable file (0x10B for PE32, 0x20B for PE32+).

2. Major/Minor Linker Version (1 byte each): This is like the version number of the tool that was

used to create this file.

3. Size of Code (4 bytes): This is the size of the actual program code in the file.

4. Size of Initialized/Uninitialized Data (4 bytes each): These tell us the size of data that the
program comes with and how much it will create when it runs, respectively.

5. Address of Entry Point (4 bytes): This is where the program starts running.

6. Base of Code/Data (4 bytes each): These are the starting points of the program's code and

data in the file.

7. Image Base (4 bytes): This is the preferred location in the computer's memory where the
program wants to be loaded.

8. Section/File Alignment (4 bytes each): These are rules for how to organize the program's code

and data in memory and in the file.

9. Major/Minor Operating System Version (2 bytes each): These tell us the minimum version of
the operating system needed to run the program.

10. Major/Minor Image Version (2 bytes each): These are the version numbers of the program

itself.

11. Major/Minor Subsystem Version (2 bytes each): These tell us the minimum version of the
subsystem (a specific part of the operating system) needed to run the program.

12. Win32 Version Value (4 bytes): This is always zero; it's a leftover from older versions of

Windows and isn't used anymore.

13. Size of Image (4 bytes): This is the total size of the program when it's loaded into memory.

14. Size of Headers (4 bytes): This is the size of all the information at the start of the file that
describes the program.

15. CheckSum (4 bytes): This is a number that helps detect if the file has been damaged or altered.

20

16. Subsystem (2 bytes): This tells us what type of interface the program uses (like a command-
line or graphical window).

17. DLL Characteristics (2 bytes): These are flags that control certain behaviors of the file.

18. Size of Stack Reserve/Commit (4 bytes each): These tell us how much memory the program

reserves and initially uses for its stack (a structure it uses to keep track of function calls).

19. Size of Heap Reserve/Commit (4 bytes each): These tell us how much memory the program
reserves and initially uses for its heap (a place where it can dynamically allocate memory).

20. Loader Flags (4 bytes): This is always zero; it's reserved for future use.

21. Number of RVA and Sizes (4 bytes): This tells us how many entries there are in the next section.

22. Data Directories (96 bytes): These are pointers to important parts of the file, like the import

and export tables, resource section, etc.

21

DLL Files in Windows

Dynamic Link Libraries, or DLLs, are an integral part of the Windows operating system. A DLL is
essentially a collection of small programs or files loaded when needed by larger programs and can be
used by multiple applications simultaneously.

Common DLLs and Their Uses

Some of the most common DLLs in the Windows environment include:

1. KERNEL32.dll: This is one of the most essential DLL files, providing applications with access to
crucial resources such as memory, process handling, and device I/O operations.

2. USER32.dll: This DLL is responsible for creating and managing the main graphical interface

elements, including windows, menus, and dialog boxes.

3. GDI32.dll and GDIPLUS.dll: These DLLs are used for 2D graphics rendering, providing
applications with functions for drawing lines, curves, rectangles, and other graphical elements.

4. ADVAPI32.dll: This DLL provides advanced services related to security, registry access, and

event logging.

5. WS2_32.dll: This DLL is integral for network operations, providing the necessary functions for
creating sockets and handling network communications.

6. MSVCRT.dll: This is the Microsoft Visual C Runtime Library which contains functions for

operations like string manipulation, mathematical calculations, and input/output processing.

Windows DLL Functions Used by Malware: A Cheat Sheet

1. CreateMutexA (KERNEL32.dll): This function creates or opens a mutex (a program object that
helps manage simultaneous access to resources). Attackers can use this to prevent multiple
instances of their malware from running on the same system, similar to how you'd lock a
bathroom door to prevent others from entering while it's in use.

2. SetUnhandledExceptionFilter (KERNEL32.dll): This function changes the function that

Windows calls when an unhandled exception (unexpected event or "error") occurs. Malware
can use this to control how the system responds to these events, like choosing how a car reacts
when it hits a bump in the road.

3. ExitProcess (KERNEL32.dll): This function ends the calling process. Malware can use this to

terminate processes, including security programs, almost like turning off a security camera.

4. GetCommandLineA (KERNEL32.dll): This function retrieves the command line string for the
current process. Malware can use this to check the command that was used to execute it, akin
to checking the instructions on a recipe before starting to cook.

22

5. WaitForSingleObject (KERNEL32.dll): This function waits for a specified object to be signaled
or for a timeout. Malware can use this to delay execution, akin to waiting for a specific time
before performing an action.

6. RtlCreateUserThread (ntdll.dll): This function creates a thread in the context of another

process. Malware can use this to inject malicious code into other programs, similar to a
parasite living inside a host.

7. CryptEncrypt (advapi32.dll): This function encrypts data. Ransomware, a type of malware, can

use this to encrypt users' files and demand payment to decrypt them, like a kidnapper asking
for ransom.

8. RegSetValueEx (advapi32.dll): This function sets the data and type of a registry key. Malware

can use this to modify the Windows Registry to enable persistence or disable security features,
almost like a burglar deactivating a home security system.

9. DeleteFile (KERNEL32.dll): This function deletes an existing file. Malware can use this to

remove files, like a thief taking away evidence.

10. CreateServiceA (advapi32.dll): This function creates a new service, which is a type of program
that runs in the background. Malware can use this to install itself as a service, hiding itself in
plain sight, like a wolf in sheep's clothing.

11. OpenProcess (KERNEL32.dll): This function opens an existing process. Malware can use this to

inject code or manipulate other programs, like a puppet master controlling puppets.

12. ConnectNamedPipe (KERNEL32.dll): This function connects a named pipe to a client process.
Malware can use this for inter-process communication, like passing secret notes between
classmates.

13. CreateRemoteThread (KERNEL32.dll): This function creates a thread in another process.

Similar to RtlCreateUserThread, malware can use this to inject and execute malicious code in
other programs, like a parasite controlling its host.

14. LoadLibrary (KERNEL32.dll): This function loads a Dynamic Link Library (DLL) into memory.

Malware can use this to load malicious DLLs, like bringing in a disguised accomplice to a heist.

15. GetProcAddress (KERNEL32.dll): This function retrieves the address of an exported function
or variable from a DLL. Malware uses this to find the location of the functions it needs to carry
out its malicious activities, like a treasure hunter using a map to find hidden treasure.

16. WriteProcessMemory (KERNEL32.dll): This function writes data to an area of memory in a

specified process. Malware can use this to inject malicious code into other programs, like a spy
planting a listening device.

17. VirtualAllocEx (KERNEL32.dll): This function reserves or commits a region of memory within

the virtual address space of a specified process. Malware can use this to secure space for its
malicious code, like a squatter claiming a piece of land.

23

18. RegCreateKeyEx (advapi32.dll): This function creates or opens a registry key. Malware can use
this to create new registry entries for persistence or to disable security features, similar to a
thief making a secret entrance in a house.

19. GetModuleHandle (KERNEL32.dll): This function retrieves a handle to a loaded module (like a

DLL). Malware can use this to find modules it needs for its operation, like finding the right tool
in a toolbox.

20. SetThreadContext (KERNEL32.dll): This function sets the context for a specified thread.

Malware can use this to manipulate the execution of threads in other processes, like a
conductor directing an orchestra.

24

Hex Editors (HxD)
Hex editors are essential tools for reverse engineering, malware analysis, and data recovery. They allow
you to view and edit binary files by displaying their contents as hexadecimal values.

HxD

HxD is a free and user-friendly hex editor for Windows that offers various features, such as searching
and replacing, exporting data, checksum and hash value calculation, and file comparison. HxD can
handle large files and provides a customizable user interface.

Hands-on Example

Exercise: Analyzing a Binary File with HxD

1. Obtain a binary file (e.g., a compiled C program, a malware sample, or an unknown file format).

2. Open HxD and load the binary file.

3. Explore the hex view, which displays the binary data as hexadecimal values, and the text view,
which attempts to display the binary data as ASCII characters.

4. Use HxD's search feature to find specific data patterns, such as ASCII strings or hexadecimal

values.

5. Experiment with HxD's features, such as copying data as text or exporting data to various
formats (e.g., HTML or C source code).

25

Hands-on Example

Exercise: Modifying a Binary File with HxD

1. Obtain a binary file (e.g., a compiled C program, a malware sample, or a game file).

2. Open HxD and load the binary file.

3. Locate a specific value or string that you want to modify (e.g., a hard-coded password or a
configuration setting).

4. Edit the value or string in the hex view or the text view.

5. Save the modified binary file and verify the changes using another tool or by executing the

modified file (if safe).

Hands-on Example

Exercise: Comparing Binary Files with HxD

1. Obtain two binary files that you want to compare (e.g., two different versions of a program or
a clean and infected file).

2. Open HxD and use the "Analysis" feature then "Data comparison" and "Compare".

26

3. Analyze the differences and determine their significance (e.g., identifying code changes or data
modifications).

27

PE Analysis Tools (PEiD, CFF Explorer, PEview)
Portable Executable (PE) is a common file format for executables, object code, and DLLs in the
Windows operating system. Analyzing PE files is crucial for reverse engineering, malware analysis, and
software debugging.

PEiD

PEiD is a free and user-friendly tool for detecting packers, cryptors, and compilers used in PE files. It
comes with a large database of signatures and supports plugins to extend its functionality.

CFF Explorer

CFF Explorer is a versatile PE analysis tool that offers various features, such as viewing and editing PE
file structures, importing and exporting data, and disassembling code. CFF Explorer also includes a
built-in hex editor and supports scripting for automation.

PEview

PEview is a lightweight and straightforward tool for viewing the internal structure of PE files. It allows
you to inspect various PE file sections, such as the headers, data directories, and import/export tables.

28

Hands-on Example

Exercise: Identifying Packers with PEiD

1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).

2. Open PEiD and load the PE file.

3. Observe the detected packer, cryptor, or compiler in the PEiD interface.

4. Research the detected packer, cryptor, or compiler to learn more about its features and how
it might affect your analysis.

UPX (Ultimate Packer for eXecutables) is an open-source, portable, high-performance executable
packer for several different executable formats. It achieves an excellent compression ratio and offers
very fast decompression.

Here's how it works:

When a program (an executable) is packed with UPX, the data is compressed to take up less space.
When you run the packed program, the data is decompressed in memory, and the program is executed
normally. This can be beneficial for reducing the disk space usage of software, or for software
distribution where you want to minimize download times.

However, the use of UPX is not limited to legitimate applications. Many malware authors use UPX and
other packers to obfuscate their code, making it harder for antivirus software to detect the malware.
This is because the packed executable's code looks completely different from the original malware
code, so signature-based detection methods may fail to identify it.

It's important to note that while packing an executable can be used to hide malicious code, packing
itself is not inherently malicious. There are many legitimate reasons to pack an executable, such as
reducing its size for storage or distribution.

For malware analysis, tools like UPX can also be used in a process called unpacking, where the packed
executable is transformed back into its original form for further analysis. This can sometimes be as
simple as using the -d option with UPX (e.g., upx -d packed.exe), but many times malware authors will
modify the packing process to make it more difficult to unpack and analyze the executable.

29

Hands-on Example

Exercise: Analyzing a PE File with CFF Explorer

1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).

2. Open CFF Explorer and load the PE file.

3. Explore the PE file's structure by navigating through sections, such as headers, import/export
tables, and resources.

4. Use CFF Explorer's built-in hex editor to view and modify the binary data of the PE file.

30

Hands-on Example

Exercise: Viewing PE File Structure with PEview

1. Obtain a PE file (e.g., a compiled Windows program or a malware sample).

2. Open PEview and load the PE file.

3. Inspect the PE file's structure by navigating through sections, such as headers, data directories,
and import/export tables.

4. Observe any interesting or unusual characteristics of the PE file that may warrant further

investigation.

31

Windows Common Processes
These are legitimate Windows processes, but attackers might misuse or impersonate them for
malicious purposes. To identify potential malware, analyze the processes' behavior, command line
arguments, parent processes, file locations, and network activity.

Svchost.exe
svchost.exe, or Service Host, is an integral and legitimate component of the Microsoft Windows
operating system. It serves as a shell for loading services from Dynamic Link Library (DLL) files, which
contain the code and data used by multiple applications simultaneously.

The Role of svchost.exe

Upon Windows startup, the operating system checks the Windows Registry and builds a list of Services
or groups of Services that need to load. This loading process involves the Service Host (svchost.exe),
located in the System32 folder. The services hosted by svchost.exe are primarily implemented as
dynamically linked libraries (dll files).

The svchost.exe process runs with specific parameters or flags, each corresponding to different
functionalities:

• The -k flag requests information from a specific registry key.

• The -p flag enforces various policies.

• The -s flag instructs svchost.exe to load only the service specified by the flag from the selected
group.

Multiple Instances of svchost.exe Processes

Multiple instances of svchost.exe processes are common in a Windows operating system. Grouping
services under different svchost.exe processes helps in better control, management, and debugging of
the services.

32

You can view these groups in the Windows Registry under the following key:
HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\Svchost.

svchost.exe High CPU or Disk Usage

Svchost.exe can occasionally display high resource utilization. Although it can be challenging to isolate
the exact service causing this, tools like the built-in Resource Monitor or SysInternals Process Explorer
can assist.

By right-clicking on the svchost.exe process and selecting 'Go to Process', you can identify the
associated services. For a more detailed analysis, tools like the Svchost Viewer provide comprehensive
information about the services linked with a specific svchost process, including process ID, data
read/written, service status, and more.

Is svchost.exe Infected?

While svchost.exe is a legitimate file, malware can impersonate it to deceive antivirus software. To
verify svchost.exe's authenticity, check its digital signature. Genuine files are signed by their
manufacturers. You can access this information by opening Task Manager, going to the Details tab, and
checking the svchost.exe properties.

33

If you suspect an infection, you can scan the svchost.exe file using Windows Defender or any third-
party antivirus software.

Explorer.exe
Explorer.exe, also known as Windows Explorer, is a critical component of the Windows operating
system. As the primary interface through which users interact with Windows, it manages various
aspects of the user experience, including the desktop, taskbar, and file management system.

34

The Role of explorer.exe

Explorer.exe is the graphical user interface (GUI) shell provided by Windows. It is responsible for
providing the user interface that allows users to interact with files and applications. This includes the
taskbar, start menu, desktop icons, and the File Explorer utility. Essentially, explorer.exe is a program
that controls much of the user's experience in the Windows operating system.

When Windows starts, it automatically runs explorer.exe to provide the user interface. This process
runs throughout the entire duration the system is active, facilitating user interaction with the system.

Managing the explorer.exe Process

The explorer.exe process usually operates without user intervention. However, at times, it might
malfunction or stop responding. The most common symptom of such a situation is a frozen or missing
taskbar or desktop.

If explorer.exe crashes, it can usually be restarted using the Task Manager:

1. Press Ctrl + Shift + Esc to open Task Manager.
2. Click on File > Run new task.
3. Type explorer.exe and press Enter.

This will restart the explorer.exe process and, in most cases, resolve any temporary glitches or freeze-
ups.

Explorer.exe High CPU or Disk Usage

Occasionally, explorer.exe may display high CPU or disk usage. Although this behavior can be normal
during high file system activity, consistent high resource usage might indicate a problem.

Several factors can contribute to high resource usage by explorer.exe:

1. Large number of startup applications: If too many applications are set to launch at startup,
explorer.exe might consume a lot of resources as it manages these processes. You can manage
startup applications from the Startup tab in Task Manager.

2. Corrupted system files: If Windows system files, especially those related to explorer.exe, are
corrupted, they may cause high resource usage. Running the System File Checker tool can help
detect and repair corrupted system files.

3. Malware or viruses: Malware often targets critical system processes like explorer.exe to hide
its activities. Running a complete system scan with a reliable antivirus can help detect and
remove such threats.

Is explorer.exe Infected?

As with svchost.exe, explorer.exe is a critical system process that malware can impersonate to evade
detection. Therefore, if explorer.exe exhibits suspicious behavior, like high resource usage with no
apparent reason, it might be infected.

To check if explorer.exe is genuine, you can follow the same steps as for svchost.exe. Open Task
Manager, go to the Details tab, right-click on explorer.exe, and select Properties. In the Digital

35

Signatures tab, you can see the name of the signer, which should be Microsoft Corporation for the
legitimate explorer.exe.

Remember to keep your antivirus software updated and regularly scan your system to protect against
such threats.

Rundll32.exe
Rundll32.exe, similar to svchost.exe and explorer.exe, is an integral component of the Windows
operating system. This process is designed to launch functionality stored in shared Dynamic-Link
Library (DLL) files.

The Role of rundll32.exe

Rundll32.exe is a legitimate Windows file that executes functions embedded in DLL files. DLL files are
libraries containing code and data that can be used by multiple programs concurrently. Unlike
executable files, you cannot directly run DLL files, but they can be called upon by other executable files
that require their services.

Rundll32.exe thus serves as a bridge between the system and the DLL files, facilitating the calling and
execution of functions encapsulated within DLL files.

Managing the rundll32.exe Process

Under normal conditions, rundll32.exe operates seamlessly without user intervention. However,
situations may arise where rundll32.exe behaves abnormally, causing problems such as system
slowdowns or freezes.

If rundll32.exe becomes problematic, identifying the root cause is vital. You can do this by analyzing
the command-line arguments of the process to identify which DLL file and function the process is
invoking. You can view this information in the Task Manager by going to the Details tab and adding the
'Command line' column.

Rundll32.exe High CPU or Disk Usage
At times, rundll32.exe might exhibit high CPU or disk usage. This can occur for several reasons:

1. Malfunctioning DLLs or software: If a DLL file or program that rundll32.exe is invoking behaves
abnormally, it could cause high resource usage. In such cases, updating or reinstalling the
associated software might resolve the issue.

2. Virus or malware: Malware often uses the names of legitimate system files to avoid detection.
A virus could be impersonating rundll32.exe and causing high resource usage. Running a full
system scan with a reliable antivirus can detect and remove such threats.

Is rundll32.exe Infected?

Like other critical system files, rundll32.exe is a target for malware. If you observe rundll32.exe
behaving suspiciously or consuming high resources without an apparent reason, it might be infected.

To verify the authenticity of rundll32.exe, check its digital signature. Genuine rundll32.exe files are
signed by Microsoft Corporation. You can view this information in the Task Manager by going to the

36

Details tab, right-clicking on rundll32.exe, and selecting Properties. Under the Digital Signatures tab,
you should see the name of the signer.

Cscript.exe
Cscript.exe is another essential component of the Windows operating system, specifically involved in
script processing.

The Role of cscript.exe

Cscript.exe, or Console Based Script Host, is a Microsoft Windows built-in utility used to interpret
scripts written in scripting languages like VBScript or Jscript. It offers a command-line interface for
Windows Script Host (WSH), allowing scripts to be run from the command console (cmd.exe).

While the companion utility wscript.exe (Windows Based Script Host) displays output in message
boxes, cscript.exe outputs to the command console. This feature makes it particularly useful for
running scripts that automate system tasks or batch processing tasks.

Managing the cscript.exe Process

Cscript.exe is an on-demand process, meaning it only runs when called upon to interpret a script.
Consequently, you will typically only see it running in your Task Manager when a script is being
executed.

However, if cscript.exe appears to be consuming substantial system resources or running without your
initiation, it could indicate an issue such as a malfunctioning script or even malware activity.

If cscript.exe becomes problematic, the first step to troubleshooting would be to identify the script it's
running. This can usually be determined from the command-line arguments visible in the Task Manager
(under the Details tab, with 'Command line' column enabled).

Cscript.exe High CPU or Disk Usage

High resource usage by cscript.exe could be due to several factors:

1. Resource-intensive scripts: If a script being run by cscript.exe is performing complex or
extensive tasks, it might cause high CPU or disk usage. Optimizing the script or running it
during off-peak times may alleviate the issue.

2. Malfunctioning scripts: A script with an error or loop could cause cscript.exe to consume
excessive resources. Reviewing and debugging the script should resolve the problem.

3. Malware: As with other system processes, malware can impersonate or exploit cscript.exe to
evade detection. Running a full system antivirus scan can help detect and eliminate such
threats.

Is cscript.exe Infected?

As a legitimate system process, cscript.exe could be targeted by malware. Unusual activity by
cscript.exe, such as running without user initiation or high resource usage, could be indicative of an
infection.

37

To verify the legitimacy of cscript.exe, check its digital signature. A genuine cscript.exe file should be
signed by Microsoft Corporation. This can be confirmed in the Task Manager's Details tab by right-
clicking on cscript.exe, selecting Properties, and checking the Digital Signatures tab.

Regsvr32.exe
Regsvr32.exe, like many other system processes such as cscript.exe and rundll32.exe, is a critical part
of the Windows operating system. This process is specifically linked to the registration and
unregistration of DLL files and ActiveX controls within the system's registry.

The Role of regsvr32.exe

Regsvr32.exe, short for 'Register Server', is a command-line utility in Windows used to register and
unregister Dynamic-Link Library (DLL) files and ActiveX controls in the Windows Registry. It enables
programs to use the functionality stored in DLL files and ActiveX controls, which are essential
components of many applications and Windows features.

When a new DLL file or ActiveX control is added to the system, it needs to be registered to function
correctly. Similarly, when it's removed, it should be unregistered. The regsvr32.exe command is
typically used for these actions, making it a vital utility for software installation, updates, and removals.

Managing the regsvr32.exe Process

Typically, regsvr32.exe operates quietly in the background, invoked only when a program needs to
register or unregister a DLL file or ActiveX control. It's not a process that continuously runs or appears
in the Task Manager unless it's actively performing a task.

However, if regsvr32.exe shows up unexpectedly in Task Manager or appears to be consuming a lot of
system resources, it may indicate a problem, like a malfunctioning program or even a malware
infection.

Regsvr32.exe High CPU or Disk Usage

Regsvr32.exe isn't typically associated with high resource usage. If you notice high CPU or disk usage
linked to regsvr32.exe, consider these potential causes:

1. Software installation or removal: If you've recently installed or removed software,
regsvr32.exe might be active, registering or unregistering DLL files or ActiveX controls.

2. Corrupted or missing DLLs/ActiveX controls: If a DLL file or ActiveX control is corrupted or
missing, regsvr32.exe might repeatedly attempt to register it, leading to high resource usage.

3. Malware: Malicious programs sometimes disguise themselves as legitimate processes, like
regsvr32.exe, to avoid detection. If you notice regsvr32.exe running without an apparent
reason, it might be malware masquerading as the genuine process.

Is regsvr32.exe Infected?

If you observe suspicious behavior from regsvr32.exe, it could be a sign of malware. To check the
legitimacy of regsvr32.exe, view its digital signature, which should be signed by Microsoft Corporation
for the authentic file.

38

Dllhost.exe
Dllhost.exe, similar to regsvr32.exe and cscript.exe, is an integral part of the Windows operating
system. Its primary function revolves around the management and control of DLL-based applications.

The Role of dllhost.exe

Dllhost.exe, also known as COM Surrogate, is a process that hosts DLL files and enables them to run in
their own process space instead of running within the process space of the calling application. This
architecture helps enhance system stability. If a COM object crashes, it won't affect the original
application's process space but only the COM Surrogate process.

The dllhost.exe process is commonly used to generate thumbnail images in Windows Explorer and to
run background tasks initiated by various applications.

Managing the dllhost.exe Process

Dllhost.exe should run smoothly under typical circumstances, requiring minimal user intervention.
However, if you notice that it's consuming a lot of system resources, or if you observe multiple
instances of it running simultaneously, it could be indicative of an issue.

If dllhost.exe appears problematic, the initial step towards troubleshooting involves identifying which
DLL or COM object the process is hosting. The details of the hosted objects are typically included in
the command-line parameters of dllhost.exe, which can be viewed in the Task Manager under the
Details tab.

Dllhost.exe High CPU or Disk Usage

High CPU or disk usage by dllhost.exe could be a result of a few factors:

1. Resource-intensive DLLs or COM objects: Certain DLL files or COM objects could require
significant resources, leading to high CPU or disk usage.

2. Malfunctioning DLLs or COM objects: DLLs or COM objects with errors or bugs can cause
dllhost.exe to consume excess resources.

3. Malware: Malicious software might impersonate dllhost.exe to avoid detection.

39

Is dllhost.exe Infected?

As a system process, dllhost.exe could be a target for malware. Suspicious behavior, such as
unexpected high resource usage or instances of dllhost.exe running without an apparent reason, could
indicate a malware infection.

Conhost.exe
Conhost.exe, standing for Console Host, is a crucial process in the Windows operating system. Much
like the previously discussed processes, such as dllhost.exe and regsvr32.exe, conhost.exe plays a
significant role in system operations.

The Role of conhost.exe

The conhost.exe process, short for Console Window Host, is involved in the management of the
command-line interface in Windows. Introduced in Windows 7 to replace the csrss.exe process for this
function, conhost.exe ensures smooth interaction between command-line applications and the
elements of the graphical Windows interface, such as the desktop, window controls, and the clipboard.

This process is essential for properly rendering the command-line window and handling user inputs.
Any command-line window you open, whether it’s Command Prompt, PowerShell, or any other, has
an associated conhost.exe process.

Managing the conhost.exe Process

You might observe multiple instances of conhost.exe in your Task Manager, and this is typically normal.
Each time you open a command-line application, a new instance of conhost.exe is started to manage
it. These instances usually consume minimal system resources and close automatically when the
associated command-line window is closed.

However, if you notice a conhost.exe process consuming a significant amount of system resources or
running without an associated command-line window, it could be an indication of an issue.

Conhost.exe High CPU or Disk Usage

High resource usage by conhost.exe could be due to a few reasons:

1. Resource-intensive command-line applications: If you're running a command-line application
that's performing intensive tasks, the associated conhost.exe process might consume more
resources.

2. Malfunctioning command-line applications: An error or bug in a command-line application
could cause the associated conhost.exe process to consume excessive resources.

3. Malware: Some malware might disguise itself as conhost.exe to evade detection.

Is conhost.exe Infected?

If you observe suspicious behavior from conhost.exe, it could be a sign of malware. To verify the
legitimacy of conhost.exe, check its digital signature. The genuine conhost.exe file should be signed by
Microsoft Corporation. You can access this information in the Task Manager under the Details tab by
right-clicking on conhost.exe, selecting Properties, and navigating to the Digital Signatures tab.

40

Certutil.exe
Certutil.exe, much like conhost.exe, dllhost.exe, and regsvr32.exe, is a critical process in the Windows
operating system. Its primary function revolves around managing and troubleshooting aspects related
to certificates in Windows.

The Role of certutil.exe

Certutil.exe is a command-line utility that is used to obtain certificate authority information and
configure Certificate Services. This tool provides a broad range of functions, including dumping and
displaying certification authority (CA) configuration information, verifying the Certificate Revocation
List (CRL), and much more.

Its primary function is to ensure that the certificate services in Windows operate smoothly, and it
assists in maintaining and validating the security of various applications and services.

Managing the certutil.exe Process

Unlike many system processes, certutil.exe is not a continuously running process. Instead, it's invoked
when required, especially when dealing with tasks related to certificates. When it's active, you can see
it in your Task Manager, but under normal circumstances, it should not consume significant system
resources.

However, if you notice it running frequently or consuming a large amount of system resources, it could
be indicative of an issue, such as a misconfiguration, an error with a certificate, or even a malware
infection.

Certutil.exe High CPU or Disk Usage

Under typical conditions, certutil.exe should not be associated with high CPU or disk usage. If you
notice such behavior, it might be due to:

1. Intensive certificate-related tasks: Tasks such as managing or validating numerous certificates
may temporarily increase CPU or disk usage.

2. Malware: Malicious software sometimes disguises itself as legitimate processes, such as
certutil.exe, to evade detection.

Is certutil.exe Infected?

If you observe suspicious behavior from certutil.exe, such as running unexpectedly or high resource
usage, it could be a sign of malware. To verify the legitimacy of certutil.exe, check its digital signature.
The genuine certutil.exe file should be signed by Microsoft Corporation.

41

Csrss.exe
Csrss.exe, similar to certutil.exe, conhost.exe, and dllhost.exe, is an integral part of the Windows
operating system. Its primary role revolves around managing the graphical instruction set under a
Windows session.

The Role of csrss.exe

Csrss stands for Client/Server Runtime Subsystem. It’s a critical process that manages and controls the
majority of the graphical instruction sets in Windows. Csrss is involved in creating or deleting threads,
and implementing the console windows, also known as command prompt. In earlier versions of
Windows, before Windows 7, it was responsible for drawing the entire Windows interface.

The csrss.exe process is launched by the system at startup, and there will typically be at least one
instance of this process running at all times. This process is essential for the stable and secure
functioning of the Windows system and should not be terminated.

Managing the csrss.exe Process

Under normal circumstances, csrss.exe operates quietly in the background, requiring no user
intervention. However, if you notice that it's consuming an unusually high amount of system resources,
it might be indicative of an issue.

Csrss.exe High CPU or Disk Usage

High CPU or disk usage by csrss.exe is uncommon and could indicate a problem. The following factors
might be responsible:

1. System or application errors: These might cause csrss.exe to consume more resources than
usual.

2. Malware: Some malware can masquerade as csrss.exe to avoid detection.

Is csrss.exe Infected?

If you observe suspicious behavior from csrss.exe, it could be a sign of malware. To verify the legitimacy
of csrss.exe, check its digital signature. The genuine csrss.exe file should be signed by Microsoft.

42

Winlogon.exe
The winlogon.exe process, much like the other processes we've discussed - csrss.exe, certutil.exe,
conhost.exe, and others, is an essential part of the Windows operating system.

The Role of winlogon.exe

Winlogon.exe stands for Windows Logon Application. It's a critical system component responsible for
handling the login and logout procedures on your PC. When you boot up your computer and enter
your credentials, it is the winlogon.exe process that verifies your username and password, allowing
you to log into your Windows user account.

Moreover, winlogon.exe manages various other user-interface features, including the secure attention
sequence, loading user profiles, and locking the computer. The process also plays a crucial role in
implementing various security protocols during a user's session.

Managing the winlogon.exe Process

Normally, there should be one instance of the winlogon.exe process running in the background of your
system. You can see it in your Task Manager, but it should not typically use a significant amount of
system resources.

If you see multiple instances of winlogon.exe, or if the process is consuming a high amount of system
resources, it could indicate a problem, such as a system error or a malware infection.

Winlogon.exe High CPU or Disk Usage

Under normal circumstances, winlogon.exe should not consume high CPU or disk resources. If you
notice unusual resource usage associated with winlogon.exe, it could be due to:

1. System errors: These could cause winlogon.exe to consume more resources than usual.
2. Malware: Some forms of malware can mimic the winlogon.exe process to evade detection.

43

Is winlogon.exe Infected?

If you notice suspicious activity from winlogon.exe, it might indicate a malware infection. You can verify
the legitimacy of winlogon.exe by checking its digital signature.

Services.exe
Services.exe is another critical system process in the Windows operating system, akin to winlogon.exe,
csrss.exe, and certutil.exe. This process manages the operation of starting and ending system services.

The Role of services.exe

Services.exe, also known as the Service Control Manager, is responsible for handling system services
in the Windows operating system. This process starts, stops, and interacts with system service
processes and is a crucial component in the management of network connections, event logging, and
other system settings.

Given its critical role, the services.exe process starts when the system boots and runs in the
background until the system is shut down.

Managing the services.exe Process

Under normal circumstances, the services.exe process operates quietly in the background, consuming
only a small fraction of the system's resources. You can see it running in your Task Manager, but it
should not be consuming high CPU or memory resources.

If you notice multiple instances of services.exe, or if the process is consuming a significant amount of
system resources, it could indicate an issue such as a system error or a malware infection.

44

Services.exe High CPU or Disk Usage

High CPU or disk usage by services.exe is not common and could indicate an issue. The following factors
might be responsible:

1. System or application errors: These might cause services.exe to consume more resources than
usual.

2. Malware: Some malware can masquerade as services.exe to avoid detection.

Is services.exe Infected?

If you observe suspicious behavior from services.exe, it could be a sign of malware. To verify the
legitimacy of services.exe, check its digital signature. The genuine services.exe file should be signed by
Microsoft.

Lsass.exe
Much like other critical system processes such as services.exe, winlogon.exe, and csrss.exe, lsass.exe
plays an integral role in the Windows operating system.

The Role of lsass.exe

Lsass stands for Local Security Authority Subsystem Service. It's a critical system process that verifies
the validity of user logins to your PC or server. This process enforces the security policy on the system,
verifies user logins, and handles password changes.

Lsass.exe generates the process responsible for authenticating users for the Winlogon service. It is
essential to the secure and stable operation of the system, and terminating this process may lead to a
system shutdown or, at the very least, a loss of certain security functions.

45

Managing the lsass.exe Process

Usually, lsass.exe operates quietly in the background, requiring no user intervention. However, if you
notice an excessive use of system resources associated with lsass.exe, it might be indicative of an issue.

Lsass.exe High CPU or Disk Usage

High CPU or disk usage by lsass.exe isn't common and could indicate a problem. The following factors
might be responsible:

1. System or application errors: These could cause lsass.exe to consume more resources than
usual.

2. Malware: Some forms of malware can mimic the lsass.exe process to evade detection.

Is Lsass.exe Infected?

If you observe suspicious activity from lsass.exe, it could be a sign of malware. You can verify the
legitimacy of lsass.exe by checking its digital signature. The genuine lsass.exe file should be signed by
Microsoft.

Wscript.exe
The wscript.exe process, like its counterparts such as lsass.exe, services.exe, and winlogon.exe, plays
an essential role in the Windows operating system.

The Role of wscript.exe

Wscript.exe stands for Windows Script Host, and it's the process that allows the Windows operating
system to execute scripts. These scripts could be in various formats such as Visual Basic Scripting (.VBS),
JavaScript (.JS), or other scripting languages. The main function of wscript.exe is to offer scripting
capabilities similar to batch files, but with a wider range of supported features.

Managing the wscript.exe Process

Typically, the wscript.exe process should not be continuously running in the background unless a script
or application is currently utilizing it. If you observe the wscript.exe process running without a known
script or application, or if it's consuming a significant amount of system resources, it could suggest a
problem such as a malfunctioning script or a malware infection.

Wscript.exe High CPU or Disk Usage

High CPU or disk usage by wscript.exe is usually an anomaly and could signify an issue. These are the
possible causes:

1. Malfunctioning scripts: Scripts that are poorly written or have errors can cause wscript.exe to
consume more resources than usual.

2. Malware: Certain types of malware can disguise themselves as wscript.exe to avoid detection
by antivirus software.

46

Is Wscript.exe Infected?

If you notice suspicious activity associated with wscript.exe, it could indicate a malware infection. You
can verify the legitimacy of wscript.exe by checking its digital signature. The genuine wscript.exe file
should be signed by Microsoft.

Wuauclt.exe
The wuauclt.exe process, similar to other critical processes such as wscript.exe, lsass.exe, and
services.exe, is an integral part of the Windows operating system.

The Role of wuauclt.exe

The wuauclt.exe process is associated with the Windows Update AutoUpdate Client. The name
"wuauclt" stands for "Windows Update Auto Update Client". As the name suggests, this process is
primarily responsible for initiating automatic updates for Windows. When the operating system checks
for updates or installs them, it's the wuauclt.exe process that is at work.

Managing the wuauclt.exe Process

Under normal circumstances, wuauclt.exe operates silently in the background, using minimal system
resources. It's usually dormant and only becomes active when Windows is checking for or installing
updates. If you notice multiple instances of wuauclt.exe, or if the process is consuming a significant
amount of system resources, it could indicate a problem, such as a system error or a malware infection.

Wuauclt.exe High CPU or Disk Usage

High CPU or disk usage by wuauclt.exe isn't common and could signify a problem. The following factors
might be responsible:

1. Update Issues: If the Windows update process encounters an error, wuauclt.exe might
consume more resources than usual.

2. Malware: Some forms of malware can disguise themselves as wuauclt.exe to avoid detection.

Is Wuauclt.exe Infected?

If you observe suspicious activity from wuauclt.exe, it could be a sign of malware. You can verify the
legitimacy of wuauclt.exe by checking its digital signature. The genuine wuauclt.exe file should be
signed by Microsoft.

MsMpEng.exe
Like other essential system processes such as wuauclt.exe, wscript.exe, and lsass.exe, MsMpEng.exe
plays a critical role in the Windows operating system.

The Role of MsMpEng.exe

MsMpEng.exe stands for Microsoft Malware Protection Engine. This process is associated with
Windows Defender, the built-in antivirus and antimalware program in Windows. Its primary function

47

is to scan files for malware when accessed, monitor system for malicious activity, and perform routine
system scans.

Managing the MsMpEng.exe Process

Under standard operating conditions, MsMpEng.exe runs in the background, consuming minimal
system resources. Its CPU or disk usage might spike when performing a system scan or when
downloading new antivirus definitions, but these instances should be temporary.

MsMpEng.exe High CPU or Disk Usage

High CPU or disk usage by MsMpEng.exe could signify a temporary condition or an issue. Potential
causes include:

1. Scanning activity: When Windows Defender scans the system, MsMpEng.exe usage will
increase. If your system is sluggish during these times, consider scheduling scans for when you
are not actively using the computer.

2. Conflicts with other software: Conflicts between Windows Defender and other antivirus
software installed on your system might cause high resource usage.

Is MsMpEng.exe Infected?

You can verify the legitimacy of MsMpEng.exe by checking its digital signature. The genuine
MsMpEng.exe file should be signed by Microsoft Corporation. You can view this information in the Task
Manager under the Details tab by right-clicking on MsMpEng.exe, selecting Properties, and then
navigating to the Digital Signatures tab.

48

Vssadmin.exe
Vssadmin.exe, like other critical system processes such as MsMpEng.exe, wuauclt.exe, and wscript.exe,
plays a crucial role in the Windows operating system.

The Role of vssadmin.exe

Vssadmin.exe, or Volume Shadow Copy Service Admin, is a command-line tool in Windows that allows
administrators to manage and configure the Volume Shadow Copy Service (VSS). This service is
responsible for creating and managing ‘shadow copies’, which are backups of files or volumes of data
at a specific point in time. These shadow copies can be used to restore data in the event of accidental
deletion, corruption, or other forms of data loss.

Managing the vssadmin.exe Process

In general, vssadmin.exe should not be running unless it's actively being used to manage the Volume
Shadow Copy Service. It is a command-line tool, which means it only runs when explicitly called by the
user or a system process. If you notice vssadmin.exe running without a known cause, or if it's
consuming a large amount of system resources, it could indicate a problem.

Vssadmin.exe High CPU or Disk Usage

High CPU or disk usage by vssadmin.exe isn't common and could indicate a problem. Potential causes
include:

1. Misconfiguration: If the Volume Shadow Copy Service is misconfigured, it could cause
vssadmin.exe to consume more resources than usual.

2. Malware: Some malware can disguise themselves as vssadmin.exe to avoid detection.

Is Vssadmin.exe Infected?

If you notice suspicious activity associated with vssadmin.exe, it could be a sign of malware. You can
verify the legitimacy of vssadmin.exe by checking its digital signature.

Smss.exe
The smss.exe process, like other key system processes such as vssadmin.exe, MsMpEng.exe, and
wuauclt.exe, is an integral component of the Windows operating system.

The Role of smss.exe

Smss.exe stands for Session Manager Subsystem. It is a critical system process that runs every time
Windows starts up. This process is responsible for managing user sessions. It sets up the system
environment variables, and it is also responsible for launching the Winlogon and Csrss.exe processes
during the startup procedure. Additionally, it helps manage and delete user profiles during log off or
system shutdown.

Managing the smss.exe Process

In normal operation, smss.exe should be running in the background and using minimal system
resources. It is typically invoked at startup and doesn’t need user interaction. If you notice multiple

49

instances of smss.exe, or if the process is consuming significant system resources, it could indicate a
problem, such as a system error or a malware infection.

Smss.exe High CPU or Disk Usage

High CPU or disk usage by smss.exe is uncommon and could signify a problem. The following factors
might be responsible:

1. System Issues: If there are problems with user sessions or system environment variables,
smss.exe might consume more resources than usual.

2. Malware: Some forms of malware can disguise themselves as smss.exe to avoid detection.

Is Smss.exe Infected?

You can verify the legitimacy of smss.exe by checking its digital signature. The genuine smss.exe file
should be signed by Microsoft.

Mshta.exe
Mshta.exe, much like other essential system processes such as the 'System' process, smss.exe, and
vssadmin.exe, is a core component of the Windows operating system.

The Role of mshta.exe

Mshta.exe, short for Microsoft HTML Application Host, is a utility that executes Microsoft HTML
Applications (HTA). HTA files are HTML files that run as fully trusted applications without the usual
constraints of the internet browser. These HTAs are commonly used for administrative scripts in the
Windows environment and system configuration tasks.

Managing the mshta.exe Process

Mshta.exe is typically invoked when an HTA file needs to be executed and does not run continuously.
If you notice mshta.exe running without a known cause, it could indicate a problem, such as a system
error or a malware infection.

50

Mshta.exe High CPU or Disk Usage

High CPU or disk usage by mshta.exe is unusual and could signify a problem. Potential causes may
include:

1. Faulty HTA Application: If an HTA application is poorly written or contains an error, mshta.exe
may consume more resources than usual.

2. Malware: Some forms of malware can masquerade as mshta.exe to avoid detection.

Is Mshta.exe Infected?

If you observe suspicious activity associated with mshta.exe, it could be a sign of malware. You can
verify the legitimacy of mshta.exe by checking its digital signature. The genuine mshta.exe file should
be signed by Microsoft.

System
The 'System' process, along with other key system processes such as smss.exe, vssadmin.exe, and
MsMpEng.exe, is a central component of the Windows operating system.

The Role of 'System' Process

The ‘System’ process, also known as NT Kernel & System, is a critical part of the Windows operating
system. It is responsible for handling various system-level operations, including managing hardware
interrupts and the execution of kernel and driver code. It also controls system threads and some
system functions such as the page swap file’s input/output.

Managing the ‘System’ Process

The 'System' process is always running when your Windows system is active. It typically consumes a
small amount of CPU, but its memory usage can be relatively high because it handles many core tasks
related to the operation of your computer. The 'System' process is integral to the operation of your
computer, so it should never be ended.

'System' Process High CPU or Disk Usage

High CPU or disk usage by the 'System' process can indicate a problem. Some potential causes include:

1. Hardware Issues: If a hardware component or driver is failing or incompatible, it may cause
the 'System' process to consume more resources.

2. Software Conflicts: Some software or system configurations may conflict with the 'System'
process, leading to increased resource usage.

Is the ‘System’ Process Infected?

The 'System' process is a core part of the Windows operating system and is unlikely to be directly
infected by malware. However, malicious software can affect its operation or mimic its name to avoid
detection. If you see a 'System' process using a substantial amount of resources, it might be worth
investigating. Keep in mind, however, that the 'System' process cannot be ended and it's not possible
to view its file location or properties like other processes.

51

Basic Dynamic Malware Analysis

Dynamic malware analysis involves executing malware samples in a controlled environment and
observing their actions, interactions, and effects on a system. Basic dynamic malware analysis focuses
on gathering essential information about the malware's behavior, such as its communication channels,
file modifications, and system-level activities.

Introduction to Dynamic Malware Analysis
Dynamic malware analysis is a method used to examine and evaluate the behavior of malware while
it's running in a system. This analysis is performed in a controlled environment, often referred to as a
sandbox, to prevent the malware from causing actual harm. This technique is an essential part of
behavioral analysis, allowing cybersecurity professionals to understand what a piece of malware does
when it is executed and how it interacts with system processes, files, and the network.

Overview of Dynamic Analysis

Dynamic analysis focuses on the actual behavior of malware. Unlike static analysis, which examines
malware's code without executing it, dynamic analysis observes the actions malware takes when run.
This can include file modifications, registry changes, network connections, and other system
interactions.

Step 1: Setting up a Controlled Environment
To perform dynamic malware analysis, you need a controlled environment where you can execute the
malware safely. This typically involves setting up a virtual machine (VM) or a sandboxed environment.
The virtual machine should be isolated from the host system to prevent any potential damage or
infection. You can use virtualization software such as VMware or VirtualBox to create and configure
the virtual machine.

Step 2: Acquiring and Preparing the Malware Sample
Obtain a copy of the malware sample you wish to analyze. It could be a file, an email attachment, or a
URL that triggers a download. Ensure that you take appropriate precautions while handling the
malware sample to prevent accidental execution or spread.

Step 3: Monitoring System Activities
Before executing the malware, set up monitoring tools to capture and record its behavior during
execution. This includes system-level activities such as file system modifications, network
communications, registry changes, and process and thread creation. Tools like Process Monitor,
Wireshark, and Regshot are commonly used for this purpose.

Step 4: Executing the Malware Sample
Launch the malware sample in the controlled environment. It is important to note that malware
samples can be highly obfuscated or self-protecting. In some cases, they may attempt to detect the
presence of a virtual machine or sandbox environment to evade analysis. To counter these techniques,
you may employ anti-anti-analysis techniques or use specialized analysis platforms.

Step 5: Monitoring and Capturing Malware Behavior
Observe the malware's behavior in real-time and allow it to execute its intended actions. Monitor the
system activities and interactions with the malware. Capture screenshots or record a video of the
malware's execution, as it may exhibit visual behaviors or display messages that are crucial for analysis.

52

Step 6: Analyzing Captured Data
Once the malware execution is complete or you decide to terminate it, analyze the captured data from
the monitoring tools. Examine the captured network traffic, file system changes, registry modifications,
and any other relevant information. Identify any connections made to external IP addresses, URLs
visited, files created or modified, and changes to system settings. This analysis will help in
understanding the purpose and capabilities of the malware.

Step 7: Extracting Indicators of Compromise (IOCs)
From the analysis, extract any Indicators of Compromise (IOCs) that can be used for detection and
prevention. This includes IP addresses, URLs, domain names, file names, and registry keys associated
with the malware. IOCs can be used to create signatures for antivirus software or to block malicious
communications at the network level.

Step 8: Documenting Findings
Finally, document your findings and observations from the dynamic malware analysis process. This
documentation should include a detailed report of the malware's behavior, captured data, IOCs, and
any relevant screenshots or videos.

Dynamic Analysis Techniques

Several techniques are widely used in dynamic malware analysis, including:

▪ System Monitoring
System monitoring involves observing the changes a piece of malware makes to a system when
executed. This could include changes to files, system calls, or alterations in the registry.

▪ Network Monitoring

Network monitoring involves examining the network traffic generated by the malware. This
can help identify any command-and-control (C&C) servers the malware communicates with,
or other malicious network activities.

▪ Memory Analysis

Memory analysis focuses on the changes that occur in the system's memory when malware is
run. It can help identify unpacked versions of malware and other artifacts that are not visible
on the disk.

53

Sandbox Analysis
Setting up a sandbox environment is an essential step in conducting secure and controlled analysis of
potentially malicious software, such as malware or suspicious files. A sandbox provides an isolated and
controlled environment where you can safely execute and observe the behavior of these files without
risking damage to your production systems. This section outlines the key steps involved in setting up a
sandbox environment.

Choose a Virtualization Platform

Select a virtualization platform that best suits your needs. Popular choices include VMware
Workstation, VirtualBox, or Microsoft Hyper-V. These platforms allow you to create and manage virtual
machines (VMs) within your existing operating system.

Install the Hypervisor

Install the selected virtualization software on your host machine. This software acts as the hypervisor,
enabling you to create and manage virtual machines.

Create a New Virtual Machine

Using the virtualization software, create a new VM that will serve as your sandbox environment.
Specify the desired operating system and allocate appropriate resources such as CPU, memory, and
storage space. It is recommended to choose a lightweight and easily restorable operating system for
the sandbox.

Install the Operating System

Install the chosen operating system within the newly created virtual machine. Ensure that you follow
the installation process as you would on a physical machine, including configuring network settings
and user accounts.

Configure Networking

To enable network connectivity for the sandbox environment, configure the network settings of the
virtual machine. You can choose from various network modes such as bridged, NAT (Network Address
Translation), or host-only depending on your requirements. Bridged mode allows the sandbox
environment to have direct access to the network, while NAT and host-only modes provide isolated
network environments.

Install Security Software

To enhance the security of your sandbox environment, install appropriate security software such as
antivirus or endpoint protection tools. Ensure that these tools are regularly updated to detect and
prevent any potential threats within the sandbox.

Disable Auto-Run and Auto-Update Features

Disable any auto-run or auto-update features within the sandbox environment. This prevents
automatic execution or unintended software updates, allowing you to control the execution of files
and maintain the integrity of the sandbox environment.

54

Take Snapshots or Backups

Before executing any potentially malicious files, take a snapshot or backup of the clean sandbox
environment. This enables you to revert back to a known clean state if the analysis causes any
unintended consequences or compromises the integrity of the sandbox.

Implement Isolation

Ensure that the sandbox environment is isolated from your production systems and network. This
prevents any accidental spread of malware or unauthorized access to sensitive information. Use
separate network segments or VLANs to isolate the sandbox environment.

Execute and Monitor Files

Once the sandbox environment is set up, you can begin executing suspicious files or malware samples
within it. Monitor the behavior of the files using various monitoring tools such as process monitors,
network analyzers, or behavior analysis tools. Capture and analyze any activities or behaviors that may
indicate malicious intent.

Analysis and Reporting

After observing and capturing the behavior of the files, analyze the data collected during the sandbox
execution. Identify any malicious or suspicious activities, document the observed behaviors, and
generate a report detailing the findings. This report will serve as a valuable reference for further
analysis or incident response.

55

Analyzing Process Behavior

Process behavior analysis involves studying the activities of individual processes in a system, such as
file operations, registry modifications, and network communications. Two popular tools for process
behavior analysis are Process Monitor and Process Explorer, both from Sysinternals.

Process Monitor
Process Monitor is an advanced monitoring tool for Windows that shows real-time file system, Registry,
and process/thread activity. This tool combines the features of two older Sysinternals utilities, Filemon
and Regmon, and adds a rich set of features including powerful filtering, comprehensive event
properties, and more.

When you're analyzing malware, there are several things you should look for using Process Monitor:

1. Process Creation: Look for new processes being started. In many cases, malware will launch
new processes or inject code into existing processes.

2. File System Activity: Examine read, write, and delete operations. Malware often creates,
modifies, or deletes files. You might also see it reading files that contain sensitive information.

3. Registry Activity: Monitor for registry reads and writes. Many types of malware will make

changes to the registry to ensure they are launched at system startup, or to alter the behavior
of the system in some way.

56

4. Network Activity: Although Process Monitor is not designed to monitor network activity,
network-related events can indirectly appear. For example, you might see a process trying to
modify the system's proxy settings or firewall rules.

5. DLL Loading: Check which DLLs a process is loading. This can give you clues about what the
process is doing. Some types of malware will load DLLs that are commonly used for malicious
purposes, or they may inject code into legitimate DLLs.

6. Parent-Child Process Relationships: Understand the relationship between processes. Malware

often uses legitimate processes to carry out malicious activities. If you see a legitimate process
with a child process that looks suspicious, that could be a sign of infection.

7. Error Codes: Look for failed operations. If you see a process that's repeatedly trying to perform

an operation and failing, that could be a sign that the malware is malfunctioning or that it's
trying to perform an action that's being blocked by a security tool.

8. Suspicious Patterns: For example, malware often performs actions in a loop, such as

continuously scanning the file system or registry, or repeatedly attempting to connect to a
command-and-control server.

9. Anomalous Behavior: Any behavior that is not typical for the process. For example, if you see

a process that usually doesn't have network activity suddenly sending data to a remote server,
it could be a sign of a malware infection.

57

Best Practices

1. Filtering for Effective Results
ProcMon displays a massive amount of data, which can be overwhelming. To narrow down the output,
you should leverage its powerful filtering capabilities.

• Use the filter tool (Ctrl+L) to specify the processes or operations you're interested in.

• Start with excluding known good processes, like System Idle Process and System, to minimize
noise.

• Use conditional filtering operators like is, is not, contains, etc. to fine-tune your filtering.

2. Using the Highlight Function
Sometimes, rather than excluding data, you might want to highlight data of interest. ProcMon includes
a highlight feature (Ctrl+H) which allows you to set the same kind of conditions as a filter, but instead
of excluding non-matching events, it will highlight matching events in the list.

58

3. Save Your Filter Presets
If you often find yourself using the same filters, save the filter presets to make your work easier.
Navigate to 'Filter' > 'Organize Filters...' Here, you can save, load, or manage your filter sets.

4. Use Boot Logging for Troubleshooting
Enable boot logging (Options > Enable Boot Logging) when troubleshooting startup problems. The
boot log records all activity during system startup, which can be crucial when diagnosing boot
problems.

5. Take Advantage of Process Tree
The Process Tree (Ctrl+T) provides a visual representation of the processes and their child processes.
This is an easy way to see which processes were launched by which other processes, and it can be
crucial when analyzing malware or tracking down unwanted system behavior.

59

6. Save and Export Logs
Save the logs in PML format for detailed analysis and revisit. For sharing or using with other tools, you
might want to export them to CSV or XML formats.

PML (Process Monitor Log file)

PML is a proprietary format used by Process Monitor itself. The benefit of saving a log in PML format
is that it retains all information related to each event in the captured data. You can then reopen this
file in Process Monitor for further review, applying filters, etc. This is typically the most complete way
to save your capture.

60

Process Explorer
Process Explorer is another Sysinternals tool that offers a more detailed view of system activity than
the standard Windows Task Manager. It provides insights into handle information, DLLs loaded into a
process, and network activity.

When you're analyzing malware using Process Explorer, there are several things you should look for:

Process Hierarchy: Process Explorer provides a hierarchical view of processes, which can give you a
better understanding of parent-child relationships. Some malware may spawn from or inject
themselves into legitimate processes.

Handles and DLLs: Check which files, registry keys, and other resources a process is using by examining
its handles, and see which DLLs a process has loaded. Some types of malware will load DLLs that are
commonly used for malicious purposes, or they may inject code into legitimate DLLs.

Network Activity: Process Explorer can show you which processes have open network connections,
and where they're connected to. This can be useful for identifying malware that's communicating with
a command and control server.

Memory Inspection: Process Explorer allows you to inspect the memory of a process. This can be
useful for finding malicious code that's been injected into a process's memory.

Unusual or Suspicious Processes: Look for processes that you don't recognize, or that are behaving in
a suspicious way. For example, a process that's using a lot of CPU or disk resources could be a sign of
a malware infection.

Process Integrity Levels: Introduced with Windows Vista, process integrity levels are a part of the
security access control model that decides the permissions and user rights assigned to a process.
Malware may attempt to elevate its integrity level to gain more access rights.

Process Strings: Process Explorer can show you the strings in a process's memory. These can
sometimes give you clues about what the process is doing. For example, you might find a URL that the
malware is using to communicate with its command and control server.

Image Verification: Process Explorer can verify digital signatures of executables. Many types of
malware will not be digitally signed, or they may be signed with a certificate that's been revoked or
that belongs to a suspicious publisher.

61

Process Explorer Best Practices

Understanding and Using the Process Tree
When you open Process Explorer, you'll notice it displays a hierarchical list of processes, also known as
a process tree. The tree structure indicates the relationship between processes, with child processes
indented under their parent process. This view can help you understand which processes were started
by which other processes, a crucial piece of information when dealing with malware or debugging
software.

Discover the Process Behind a Window with the Target Icon
Ever wondered which process is behind a particular window on your screen? Process Explorer can tell
you. Simply drag the target icon from the toolbar and drop it onto a window. Process Explorer will
immediately highlight the process in its list.

Use Colors to Identify Processes
Process Explorer uses colors to help you identify different types of processes:

▪ Blue: Processes owned by your user account.
▪ Pink: Windows system processes or processes running in the system context.
▪ Green: New processes.
▪ Red: Terminated processes.
▪ Grey: Jobs, which are groups of processes.

62

Detailed Process Information
Double-clicking a process in the list brings up a detailed information window. Here you can find tabs
containing different types of information about the process, such as performance graphs, environment
variables, security settings, and much more.

Check VirusTotal Results
Process Explorer is integrated with VirusTotal, a free online service that analyzes files and URLs for
viruses, worms, trojans, and other kinds of malicious content. You can enable the VirusTotal column in
Process Explorer to quickly check the VirusTotal results for each process's main executable file.

To do this, go to the Options menu, select VirusTotal.com, and then Check VirusTotal.com.

63

Explore DLLs and Handles
The lower pane of the Process Explorer window shows you which DLLs are loaded by the selected
process and which handles it has open. This can be useful for identifying DLLs that may be causing a
problem or finding out what files, registry keys, or other resources a process is accessing.

Replace Task Manager with Process Explorer
If you prefer Process Explorer over the default Task Manager, you can make Process Explorer replace
Task Manager. To do this, go to the Options menu in Process Explorer and check Replace Task Manager.
Now, whenever you invoke Task Manager, Process Explorer will open instead.

Save Information with a Snapshot
You can save a snapshot of the current state of your system in a file for later analysis. Go to File > Save
As to do this. The file will be saved in a text-based format that you can open in any text editor.

64

Hands-on Example: Using Process Monitor and Process Explorer

Step 1: Execute the Malware in a Controlled Environment.

Step 2: Start Process Monitor. Launch Process Monitor and start capturing events. You'll see a real-
time stream of process activities.

Step 3: Filter the Events with the Malware running. Filter the events to show only the activities related
to this process. This can include file operations, registry changes, and more.

Step 4: Examine the Activities. Look for any suspicious activities, such as modifications to system-
critical files or registry keys.

Step 5: Launch Process Explorer. Use Process Explorer for a more detailed view of the Malware’s
process. Examine its loaded DLLs, open handles, and network activities.

Step 6: Analyze the Findings. Document your observations and analyze Gamma's behavior.

Exercises

Exercise: Set up a sandbox environment and run a sample malware. Use Process Monitor to observe
its activities. What files, registry keys, or network activities does it interact with?

Exercise: Using Process Explorer, examine a running process in your system. Look at its DLLs, handles,
and network activities. Can you identify any suspicious behavior?

Exercise: Choose a process and monitor it over time using both Process Monitor and Process Explorer.
Document any changes in its behavior.

65

Running Malware Samples in a Sandbox
Once you have set up your sandbox environment, you can safely execute malware samples within it.
This allows you to observe the malware's behavior without posing a risk to your system.

Remember that running malware, even in a sandbox, carries risks. Make sure your sandbox is isolated
from your network to prevent the malware from spreading. Ensure you are legally allowed to possess
and run the malware sample. Do not attempt to reverse-engineer or modify malware unless you have
the necessary skills and legal permissions.

Hands-on Example: Running a Malware Sample in a Sandbox
In this example, we'll use a malware sample. We'll use a sandbox created with VirtualBox, but the
principles apply to other sandbox environments as well.

▪ Step 1: Transfer the Malware Sample. Transfer the malware sample to the sandbox. This can
be done via a shared folder, USB emulation, or network transfer, depending on your sandbox
setup.

▪ Step 2: Prepare Monitoring Tools. Make sure you have your process monitoring (e.g., Process

Monitor), network monitoring (e.g., Wireshark), and any other analysis tools ready to go.

▪ Step 3: Start the Monitoring Tools. Before you execute the malware, start your monitoring
tools. This ensures they capture the malware's initial activities.

▪ Step 4: Execute the Malware. Run the malware sample in the sandbox. Be ready to observe

any immediate effects.

▪ Step 5: Observe and Analyze. Watch the process and network monitors for changes. Note any
new processes, network connections, file modifications, or other activities.

▪ Step 6: Clean Up. Once you've observed the malware's behavior, clean up the sandbox. If

you've taken a snapshot, you can restore it to return the sandbox to its clean state.

66

System-Level Changes
Dynamic malware analysis involves executing malware samples in a controlled environment to observe
their actions, interactions, and effects on the system. System-level changes are often necessary to
create a suitable environment for this analysis and to capture relevant information during the
execution of malware.

Here are some examples of system-level changes in basic dynamic malware analysis:

1. Virtualization: Malware analysis is typically performed in a virtualized environment to isolate
the malware from the host operating system and prevent any potential damage. Virtual
machines or sandboxing techniques are commonly used to create these isolated
environments.

2. Monitoring and Logging: System-level changes involve enabling and configuring various

monitoring and logging mechanisms to capture important information during malware
execution. This can include monitoring system calls, network traffic, file system changes,
registry modifications, and other relevant activities.

3. Network Configuration: Modifying the network configuration of the analysis environment

may be necessary to redirect network traffic generated by the malware to monitoring tools or
capture packets for analysis. This allows researchers to analyze the malware's communication
behavior and identify any malicious network activity.

4. System Configuration: Adjusting the system configuration settings, such as disabling certain

security features, enabling debug options, or altering system policies, may be required to
facilitate the execution of malware and observe its behavior without hindrance.

5. Instrumentation: Injecting additional code or using specialized tools to instrument the

malware sample or the system itself can help gather more detailed information during the
analysis. This can involve hooking API calls, modifying system libraries, or using specialized
tools like debuggers or dynamic analysis frameworks.

6. Resource Monitoring: Modifying the system to monitor resource utilization, such as CPU,

memory, and disk activity, helps identify any abnormal or suspicious behavior exhibited by the
malware.

These system-level changes aim to create a controlled and instrumented environment that allows
security researchers to observe and analyze the actions and effects of malware while minimizing
potential risks to the host system. By making these changes, researchers can gain insights into the
behavior, capabilities, and potential damage caused by malware, which can then be used to develop
mitigation strategies and improve overall security measures.

67

Regshot
Regshot is an open-source utility that compares Windows Registry snapshots before and after system
changes. It provides valuable insight into the modifications made by a software installation or system
event.

To install Regshot:

1. Download the latest version.
2. Extract the downloaded archive.
3. Run the "Regshot.exe" file to launch the application.

Using Regshot

1. Launch Regshot and choose the "1st shot" option to create an initial snapshot of your system's
registry.

2. Make the desired changes to your system, such as installing software or changing settings.
3. Click on "2nd shot" to create a second snapshot.

4. Choose "Compare" to generate a comparison report.

The report will display all the registry modifications made between the two snapshots, including
added, deleted, and modified keys and values.

68

Regshot: ANSI vs UNICODE

The version of Regshot you should use for malware analysis, whether ANSI or Unicode, depends on
the type of strings you expect to encounter during your analysis.

ANSI version can handle only ANSI strings which are typically Latin alphabets without any special
characters, whereas the Unicode version can handle a wider range of characters, including those from
various international character sets.

If you're dealing with malware that might have been developed in, or is targeting, non-Latin script
environments (e.g., languages like Chinese, Arabic, etc.), the Unicode version would be more suitable.

If you're unsure, it may be a good idea to opt for the Unicode version, as it provides broader coverage.

Analyzing Regshot Report

Analyzing a RegShot report is a key step in understanding the changes a particular piece of malware or
software has made to a system. Here are some suggestions on how to analyze a RegShot report:

1. Look for Key Changes: Review the report for key changes in system files and Windows Registry
keys. These could indicate what the malware has modified on the system. This could include
changes to Startup keys, Scheduled Tasks, or other system configurations.

2. Identify Added/Modified Values: Pay attention to any added or modified registry values. They

can indicate persistence mechanisms, changes in security settings, or other malicious behavior.

3. Check for Suspicious Entries: Look for entries that seem suspicious or out of place. These
might include entries with names that are strings of random characters, entries that reference
unfamiliar executables, or entries that seem to be trying to mimic or impersonate legitimate
entries.

4. Focus on Autostart Locations: Many pieces of malware will add entries to autostart locations

in the registry (such as
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run) to ensure they
are run each time the system starts.

5. Detect File Path Changes: If file paths have been changed or files have been added or deleted,

it could be an indication of malware activity. This could involve dropping malicious payloads
or altering system files.

6. Correlate with Other Information: If possible, correlate the information in the RegShot report

with other information from your analysis. For example, if you've analyzed network traffic or
system logs, you might be able to tie certain registry or file changes to specific network
connections or events.

7. Learn Commonly Targeted Keys: Knowing which keys are commonly targeted by malware can

help you quickly identify suspicious changes. Some of these include keys related to software
autostart, installed services, browser helper objects (BHOs), etc.

69

Regshot Hands-On Exercise

In this exercise, you will analyze the registry changes made by installing a simple application. We will
use the popular open-source text editor Notepad++ as an example.

1. Download and install the latest version of Regshot.
2. Launch Regshot and create a "1st shot" snapshot.
3. Download and install Notepad++.
4. Create a "2nd shot" snapshot in Regshot.
5. Compare the two snapshots and review the registry modifications made by the Notepad++

installation.

70

Autoruns
Autoruns is a powerful utility by Sysinternals (Microsoft) that displays all the programs, drivers, and
services configured to run automatically at startup. Autoruns provides a comprehensive view of these
entries, allowing you to identify and disable unwanted or potentially harmful items.

Here are some of the things Autoruns reports:

▪ Registry Entries: These are entries from multiple locations within the Windows registry that
define what programs should run at system startup or user logon. These can be found in
several different registry hives and keys, such as
"HKLM\Software\Microsoft\Windows\CurrentVersion\Run" and others.

▪ Startup Folder Entries: Programs can also be set to start up automatically by placing a shortcut

to them in the Startup folder for a user profile or for the entire system.

▪ Browser Helper Objects and Extensions: These are add-ons for Internet Explorer that get
loaded automatically when the browser starts.

▪ Scheduled Tasks: Tasks that are configured to run at a certain time or under certain conditions

are shown.

▪ Services: Windows services that start automatically when the system boots are displayed.

▪ Drivers: Drivers that are loaded at system boot are shown.

▪ Codecs: Some codecs are loaded at startup.

▪ Boot Execute: This is a special list of programs to be run by Windows at startup, typically used
for low-level system utilities.

▪ Image Hijacks: Image hijacks are a technique that malware sometimes uses to run in place of

legitimate programs.

By showing all these different types of auto-starting programs and not just those defined in the registry,
Autoruns provides a more comprehensive view of what is set to run automatically on a Windows
system.

71

Best Practices

Understand Autorun Locations
Autoruns shows entries from locations in the registry and file system that Windows checks during
bootup and login. These locations include run keys in the registry, startup folders, boot execute images,
services, drivers, and more. Understanding these locations can help you interpret the data Autoruns
presents.

Use the Built-in Filters
Autoruns can display a lot of entries, many of which are legitimate and necessary for Windows to
function properly. To make it easier to find potentially unwanted or suspicious entries, use the built-in
filters:

▪ Hide Microsoft Entries: This option will hide all entries that are part of the Windows operating
system, leaving only third-party software. This can be useful for quickly identifying non-
Microsoft software configured to run at startup.

▪ Hide Empty Locations: For instance, an application might create a registry key to start a
service, but if that application is uninstalled and the key isn't removed.

72

Scan with VirusTotal
Autoruns is integrated with VirusTotal, a free online service that scans files for viruses, worms, trojans,
and other kinds of malicious content. By enabling the VirusTotal.com option, you can quickly check
whether any of your autorun entries have been flagged by antivirus software.

Save and Compare Autoruns Data
Autoruns allows you to save the list of autorun entries to a file. This can be useful for troubleshooting:
you can save a list when the system is working correctly, then later, if you encounter problems, you
can save a new list and compare it with the old one to see what has changed.

Rescan and Refresh
You can refresh the displayed entries at any time by pressing F5 or using the rescan option in the File
menu. This can be useful if you've made changes to your system and want to see their effect on your
autorun entries.

73

Explore Other Users' Autorun Entries
By default, Autoruns shows you the autorun entries for the current user. But you can also view the
entries for other user accounts on the system using the User menu. This can be helpful if you're
troubleshooting a problem specific to another user account.

Careful with Deletion
Autoruns allows you to delete autorun entries, but be careful with this feature. Deleting an entry
doesn't uninstall the software; it just stops it from running automatically. If the software is necessary
for Windows or another application to function correctly, deleting its autorun entry could cause
problems.

Entry Jumping
You can right-click on an entry and select Jump to Entry or Jump to Image to open the Registry Editor
or Explorer at the location of the selected entry or file. This is a fast way to investigate entries in more
detail.

74

ProcDot

ProcDot is a robust tool designed for visual malware analysis. It analyzes debug output of Microsoft's
Sysinternals tool Procmon and generates an interactive graph showcasing the relationship between
different processes, file operations, and network activity. This provides a clear, visual representation
of the process flow and can drastically enhance the efficiency and understanding of malware analysis.

ProcDot integrates various data sources like logs from Procmon and PCAP files. It provides analysts
with the capability to visualize, navigate, manipulate, and animate the whole course of actions a
process performs, thus serving as a valuable tool for reverse engineering, incident response, and
forensic analysis.

The visualization provided by ProcDot helps in:

• Understanding the process behavior and flow

• Identifying process anomalies

• Tracking file and registry modifications

• Monitoring network activity

Using ProcDot for Malware Analysis
Before using ProcDot, you'll need data to analyze. This data often comes from a controlled malware
execution environment, or "sandbox". The most common data source is a Procmon log file.

1. Download and configure Procmon to include additional details such as Thread ID and enable
all events (Process, Thread, Registry, File System, Networking).

75

2. Disable DNS resolving (uncheck)

3. Make sure "Enable Advanced Output" is selected in the Filter menu. This provides additional
details about events that can be helpful in your analysis.

4. Execute the malware in a controlled environment and capture the logs with Procmon. Save
the log in CSV format.

76

Analyze with ProcDot

1. Launch ProcDot, and load the Procmon log file.

2. The analysis process will start, and once finished, it will display a graphical representation of
the process flow.

3. Use the mouse to navigate through the graph. Clicking on a node will display detailed

information about the event.

4. You can filter and sort the data, hide or highlight specific events, and adjust the graph's
appearance to suit your preferences.

The ability to visually follow the execution path makes it easier to understand the sequence of activities
and the overall behavior of the malware.

Best Practice for Analyzing with ProcDot
When using it with ProcDot, there are several key configurations that you should consider to achieve
the best results.

1. Setting up Filters

Exclude unnecessary data: To minimize the noise in the collected data, it's important to exclude
events that are not relevant to your analysis. You can exclude processes such as procmon.exe
itself and other unrelated processes that are running on your machine.

Include relevant data: Make sure you include the processes that you are investigating. If you
know the specific files, registry keys, or other elements that the process will interact with, add
them to the filter.

77

2. Drop Filtered Events

Normally, ProcMon keeps filtered events in memory in case you change your filters. If you are
sure of your filter and want to save memory, you can enable "Drop Filtered Events" in the Filter
menu.

3. Configuring Events to Capture

ProcMon can capture a wide range of events. However, you might not need all of them for
your analysis. Depending on the nature of the process you're analyzing, you may need to
adjust which events you capture. Typically, you would want to capture Process and Thread
Activity, File System Activity, and Registry Activity.

4. Saving the Data

To analyze the data with ProcDot, you need to save it in a format that ProcDot can understand.
ProcMon allows you to save your collected data in multiple formats, but for ProcDot, you'll
want to save it as a CSV file.

5. Enabling and Using Boot Logging

Some malicious processes start early in the boot process. To capture these, you might need to
enable boot logging. This will make ProcMon start at boot and log all activity.

78

Network Traffic Analysis for Malware Analysis

Understanding Network Traffic
Network traffic refers to the amount of data moving across a network at a given point of time. This
data is sent over the network in the form of packets, which are small chunks of data. Network traffic
can come from many different sources and serve various purposes, such as web browsing, email, file
transfers, and more.

Types of Network Traffic

There are various types of network traffic, including:

▪ Unicast: This is the most common type of network traffic, where one device sends data to
another device.

▪ Broadcast: One device sends data to all devices within a network.
▪ Multicast: One device sends data to a specific group of devices in the network.

Components of Network Traffic

Each packet of network data contains specific components:

▪ Source IP address: The IP address of the device sending the packet.
▪ Destination IP address: The IP address of the device receiving the packet.
▪ Payload: The actual data being transmitted.
▪ Header: Information about the packet, such as the source and destination IP addresses, and

details about the data in the payload.

Protocols in Network Traffic

Different protocols define how data is transmitted across a network. Some of the most common
include:

▪ TCP/IP: This is the most common network protocol, and it is used by the internet. It includes
multiple protocols, including IP, TCP, UDP, and ICMP.

▪ HTTP/HTTPS: These are used for web traffic. HTTPS is a secure version of HTTP.
▪ FTP: File Transfer Protocol, used for transferring files between devices.
▪ SMTP/POP3/IMAP: These are used for email traffic.

Analyzing Network Traffic

Network traffic analysis involves capturing and inspecting network traffic to identify any issues or
potential threats. For example, an unusually high amount of traffic could indicate a denial of service
(DoS) attack, while traffic to a known malicious IP address could indicate a device has been infected
with malware. By analyzing network traffic, we can detect anomalies, identify patterns consistent with
malware activity, and understand the nature of network interactions.

79

Wireshark
As a malware analyst, you are frequently tasked with dissecting threats, understanding their nature,
and developing defenses. A crucial component of your tool kit is Wireshark, a highly sophisticated,
open-source network protocol analyzer. This tool provides a comprehensive window into the complex
web of data traffic, facilitating in-depth analysis of malware's network communication. Network
analysis with Wireshark can be a complex task, and it's important to follow best practices to ensure
accurate and effective analysis.

Basic Packet Filtering

While Wireshark's ability to capture all network traffic is invaluable, it can also be overwhelming when
searching for a malware's footprint. This is where Wireshark's filtering capabilities come into play.

You can filter packets using Wireshark's display filters and capture filters. Display filters, as the name
suggests, filter the display of captured packets. For example, if you want to see only DNS traffic, you
can apply a display filter like dns, and Wireshark will only show DNS packets.

Exercise: Set up a sandbox environment and run a sample malware. Use Wireshark to capture the
network traffic it generates. Can you identify any suspicious activities?

Visualizing Network Traffic with Wireshark

Visualizing network traffic with Wireshark is a powerful technique for gaining insights into the behavior
and structure of network traffic.

Graphing Features

Wireshark provides several powerful graphing features that can be used to visualize network traffic.
These features include the I/O graph, the packet rate graph, and the TCP stream graph.

80

The I/O graph displays the input and output traffic on a selected network interface over time, allowing
you to visualize the traffic patterns and identify potential bottlenecks or issues.

The packet rate graph displays the number of packets per second on a selected network interface over
time, allowing you to visualize the traffic patterns and identify potential spikes or drops in traffic.

The TCP stream graph displays the TCP traffic patterns between two hosts, allowing you to visualize
the flow of traffic and identify potential issues such as slow response times or packet loss.

Protocol Hierarchy Pane

The protocol hierarchy pane in Wireshark provides a powerful tool for visualizing the structure and
behavior of network traffic. The protocol hierarchy pane displays a breakdown of the protocols used
in each packet, allowing you to visualize the traffic patterns and identify potential issues or anomalies.
By using the protocol hierarchy pane to visualize the traffic patterns and the structure of the network
traffic, you can gain insights into the behavior of the network and identify potential security threats,
performance issues, or other anomalies.

81

Colorization Rules

Wireshark provides a powerful colorization feature that allows you to color-code packets based on
specific criteria. By using colorization rules to highlight packets that match specific criteria, you can
quickly identify potential issues or anomalies in the network traffic.

For example, you could use colorization rules to highlight packets that contain HTTP errors, or to
highlight packets that are associated with a specific IP address or port. By using colorization rules to
highlight packets that match specific criteria, you can quickly identify potential issues and take
appropriate action.

Use a Filter

When analyzing network traffic with Wireshark, it's important to use a filter to isolate the packets that
are related to your analysis. Using a filter will help you focus on the packets that are relevant to your
analysis, and make it easier to identify potential issues or anomalies.

Capture Only What You Need

When capturing network traffic with Wireshark, it's important to capture only what you need.
Capturing too much traffic can result in large capture files that are difficult to analyze, and can lead to
performance issues on the capture machine.

Organize Your Analysis Workflow

Organizing your analysis workflow is an important best practice for network analysis with Wireshark.
By establishing a clear and consistent workflow, you can ensure that your analysis is accurate and
efficient.

Understand Protocol Behavior
To effectively analyze network traffic with Wireshark, it's important to understand the behavior of the
protocols being used. By understanding the behavior of the protocols, you can identify potential issues
and anomalies that could impact network performance or security.

82

Visualize the Traffic

Visualizing network traffic with Wireshark is an important best practice for network analysis. By
visualizing the traffic, you can identify potential patterns or anomalies that could be impacting network
performance or security.

Keep Wireshark Up to Date

It's important to keep Wireshark up to date with the latest updates and patches. Wireshark is a
powerful tool that is constantly evolving, and keeping it up to date will ensure that you have access to
the latest features and bug fixes.

Advanced Filtering Techniques

1. IP Address Filtering
A common task in malware analysis is identifying suspicious IP addresses. With Wireshark, you can
create a display filter for a specific IP address, such as ip.addr == 192.168.1.1, or a range of IP
addresses.

To identify a particular host communicating with an IP, you can use a combined filter, such as
ip.addr == 192.168.1.1 && ip.addr == 192.168.1.2. This filter will display only the packets where
both these IP addresses are either source or destination.

2. Protocol Filtering
Malware often uses specific protocols to communicate with its command and control servers.
Wireshark allows you to filter traffic based on protocol types. For example, to filter HTTP traffic,
you could use the http display filter. For more specific analysis, you can filter by HTTP methods:
http.request.method == "POST".

3. DNS Query Filtering
Malware often uses domain generation algorithms (DGA) to evade detection. These generate
numerous domain names that the malware could potentially communicate with. Wireshark's
dns.qry.name filter can help detect such behavior. By applying this filter and observing a large
number of queries to non-existent domains, an analyst can suspect DGA activity.

4. Payload Filtering
Malware often hides data in packet payloads. Analysts can filter on the content of the payload
using Wireshark. For example, to find HTTP GET requests containing a specific user agent, you
could use a filter like http contains "User-Agent: suspicious-agent".

Detecting Beaconing

Beaconing is a technique used by malware to signal its presence to its command and control servers.
It involves sending regular, often encrypted, traffic between the infected host and the command and
control servers. This traffic can often fly under the radar of IDS/IPS due to its regularity and small size.

To detect beaconing with Wireshark, an analyst can look for regular, outbound traffic from a host. A
conversation filter, such as ip.addr == 192.168.1.1 && tcp, can help identify this traffic. If the same size
and destination packets appear at regular intervals, it may indicate beaconing activity.

83

Main Wireshark Filters

This table provides an overview of 25 common Wireshark filters and their descriptions. These filters
can help you quickly focus on specific aspects of network traffic during analysis, making the process
more efficient and effective.

No. Wireshark Filter Description

1 ip.addr == x.x.x.x Filter by IP address

2 ip.src == x.x.x.x Filter by source IP address

3 ip.dst == x.x.x.x Filter by destination IP address

4 tcp.port == xx Filter by TCP port

5 udp.port == xx Filter by UDP port

6 tcp.flags.syn == 1 && tcp.flags.ack == 0 Filter for TCP SYN packets

7 tcp.flags.reset == 1 Filter for TCP RST packets

8 http.request.method == "GET" Filter for HTTP GET requests

9 http.request.method == "POST" Filter for HTTP POST requests

10 dns.qry.name == "example.com" Filter for DNS queries for example.com

11 wlan.sa == xx:xx:xx:xx:xx:xx Filter by WLAN source MAC address

12 wlan.da == xx:xx:xx:xx:xx:xx Filter by WLAN destination MAC address

13 icmp Filter for all ICMP packets

14 ssl OR tls Filter for all SSL/TLS packets

15 (ip.src == x.x.x.x) && (ip.dst == y.y.y.y) Filter for traffic between two IP addresses

16 ip.addr == x.x.x.x && tcp.port == xx Filter for traffic with specific IP address and
TCP port

17 frame.number == x Filter by frame number

18 frame.len >= x Filter for packets with a minimum length of x
bytes

19 frame.len <= x Filter for packets with a maximum length of x
bytes

20 http.cookie contains "example" Filter for HTTP packets containing the text
"example" in the cookie

21 ftp.request.command == "USER" Filter for FTP requests with the USER
command

22 dns.flags.response == 1 Filter for DNS response packets

23 tcp.analysis.retransmission Filter for TCP retransmissions

24 tcp.analysis.duplicate_ack Filter for duplicate TCP acknowledgements

25 (tcp.flags.syn == 1) && (tcp.flags.ack == 1) Filter for TCP SYN-ACK packets

84

Useful Knowledge in Analyzing Network Traffic

▪ Finding the Default Gateway

When analyzing a pcap file, there are a few ways you might be able to identify the IP address
of the default gateway (which is often a router, but not always):

1. Look for ARP (Address Resolution Protocol) Packets: Devices will often send an ARP

request to determine the MAC address of the default gateway. You can filter for ARP
packets in the pcap file. The IP address associated with the MAC address identified as the
gateway in these ARP packets is often the default gateway.

2. Check ICMP (Internet Control Message Protocol) Redirect Messages: Routers often send

ICMP Redirect messages to tell hosts to use a different gateway. If any such messages are
present in the pcap file, the IP address of the sender (source IP) is likely the IP of a router,
potentially the default gateway.

3. Look for DHCP (Dynamic Host Configuration Protocol) Messages: If the pcap file captured

the device's network initialization process, it might contain DHCP messages. The DHCP
Offer and Acknowledgement (ACK) messages from the DHCP server often include the
default gateway's IP address as part of the network configuration information.

4. Check for Traceroute or Ping Packets: If the pcap file includes a traceroute operation, or
pings to a multicast address, the IP address of the first hop will likely be the default
gateway.

85

▪ Identify any Potential SQL Injection Attempts

Analyzing a pcap file for potential SQL injection attempts requires deep packet inspection to
look for SQL keywords and suspicious patterns in the payload of the packets. SQL Injection is
typically an attack against a web application, so it's most likely to be found in HTTP requests,
specifically in the URI, GET parameters, POST data, or even in HTTP headers such as cookies.

1. Filter HTTP Traffic: First, you would need to filter for HTTP traffic. This can be done by
entering http into the filter bar in Wireshark.

2. Search for Suspicious Patterns: Look for any suspicious patterns or payloads in the HTTP

request URI, GET parameters, and POST data. This is usually where the SQL Injection
happens. Some things to look for include SQL commands like SELECT, INSERT, DROP,
DELETE, and so on. Other telltale signs might include --, which is a comment in SQL and is
often used in SQL Injection attacks to comment out the rest of the SQL statement to
prevent syntax errors.

3. Use http.request.method == "GET" or http.request.method == "POST" filters: To make

your task easier, you can use these filters to isolate only HTTP GET or POST requests, which
are the types of requests most likely to contain SQL Injection attempts.

4. Use Follow TCP Stream: Wireshark allows you to follow a TCP stream. This can be helpful

to see the full exchange between the client and server for a particular connection.

▪ Identify TCP port Scanning Activities

When analyzing a pcap file for TCP port scanning activities, you are looking for evidence of a
system sending a large number of packets to various ports to see if they are open. Here are
some typical signs of a port scan:

1. Increase in SYN packets: A common technique used in port scanning is the SYN scan
(or half-open scan). The scanner sends a SYN packet as if it is going to open a full TCP
connection but then stops after the target responds. Therefore, seeing a large number
of SYN packets from one source to multiple destination ports may indicate a port scan.

2. Host scanning multiple ports: If you see a single host sending packets to multiple ports

on another host, it could indicate that a port scan is in progress.

3. Sequential ports being accessed: If the ports are being accessed in a sequential
manner (for example, 1, 2, 3, 4, and so on), it may be a sign of a port scan.

4. Use of rarely-used ports: If the scan includes attempts to connect to ports that are

rarely used, it may be an indicator of a port scan.

5. Incomplete TCP connections: Port scans often involve sending TCP SYN packets but
not completing the three-way handshake (by not sending the final ACK packet). This is
known as a SYN scan or half-open scanning.

86

6. Multiple resets (RST packets): A large number of TCP RST packets from various
destination ports may indicate that a port scan is occurring.

To do this in Wireshark:

1. Open the pcap file in Wireshark.
2. Set the filter to tcp.flags.syn == 1 && tcp.flags.ack == 0 to show SYN packets.

▪ Identify Potential Distributed Denial of Service (DDoS) Activity.

Detecting Distributed Denial of Service (DDoS) activity in a pcap file involves looking for
unusual patterns of network traffic. DDoS attacks typically involve a large number of requests
or connections coming from many different sources, aimed at overwhelming a target server
or network. Here are some typical signs of a DDoS attack:

1. High Volume of Traffic: One of the clearest indicators of a DDoS attack is an abnormally
high volume of network traffic, especially if it's concentrated over a short period of
time.

2. Many Requests From Different IPs: In a Distributed Denial of Service attack, the traffic

often comes from many different source IP addresses. If you see a large number of
packets coming from a wide range of different IPs, it might be a sign of a DDoS attack.

3. Multiple Requests to a Single Destination: If you see a large number of packets or

connections directed at a single target IP address or a single target port, this might
indicate a DDoS attack.

4. Repeated Requests: If the same request is being repeated from multiple IPs, it could

be a sign of a DDoS attack.

5. Traffic Spikes: Sudden spikes in traffic can indicate a DDoS attack, especially if the
traffic volume drops off quickly after the spike.

Here are some steps that can be used with Wireshark, a common network protocol analyzer:

1. Create Statistics: Go to Statistics -> Conversations or Statistics -> Endpoints to view
traffic patterns between specific IPs. You can sort by packet count or byte count to
identify potential targets of a DDoS attack.

87

2. Use IO Graphs: The IO Graph (Statistics -> IO Graphs) can help visualize traffic patterns
over time. You might see a significant spike in traffic during a DDoS attack.

3. Use Filters: Wireshark allows you to filter based on IP address, TCP, UDP, ICMP and
many other parameters, which can help narrow down the traffic you are looking for.

▪ Identify Potential Command and Control (C2) Communication

1. Filter for Common C2 Protocols: C2 traffic can be disguised to look like regular traffic,
but it typically uses certain protocols. Common protocols used for C2 traffic include
HTTP(S), DNS, IRC, and custom TCP/UDP protocols. Filter the traffic in your pcap file
by these protocols.

2. Look for Anomalies: C2 communication often involves some type of anomaly or

suspicious pattern. Look for these types of things:

a. Repeated communication to a single IP address: While it's normal for computers
to repeatedly communicate with certain IP addresses (like a default gateway),
frequent communication with an unrecognized IP address might be a sign of a C2
server.

b. Large data transfers: Large uploads (data sent from the compromised system to

the C2 server) can be a sign of data exfiltration.

c. Odd DNS requests: Look for frequent requests to a single domain or requests to
domains with unusual or randomized names. Attackers sometimes use DNS as a
covert communication channel.

88

d. Unusual timing of the traffic: For example, traffic occurring at odd hours or in
noticeable patterns can be a sign of C2 activity.

3. Analyze Payloads: If the traffic is not encrypted, you might be able to gain insights

from the payloads of the packets. Look for command-like strings or encoded data.

4. Check the Geo-location of IP Addresses: It's a common practice for attackers to host
their C2 servers in countries where they're less likely to be taken down. Thus, if you
notice a lot of traffic to and from a country that you wouldn't normally be
communicating with, it might be a sign of C2 traffic.

5. Compare with Threat Intelligence: You can use various threat intelligence tools and

databases to check whether the IP addresses or domains you're communicating with
are associated with known threats. Some examples of these are VirusTotal,
ThreatMiner, AlienVault's OTX, etc.

▪ Identify Phishing Attempts

Detecting phishing attempts in a pcap file involves identifying suspicious patterns in the
network traffic, such as visiting known phishing sites or transmitting sensitive information over
unsecured protocols. Here are some steps to guide you:

1. Filter for HTTP and HTTPS traffic: Start by filtering for HTTP and HTTPS traffic as
phishing often happens over these protocols. In the filter bar at the top of the
Wireshark window, type "http" or "https" and press Enter.

2. Look for GET requests to known phishing sites: If you have a list of known phishing

sites, look for HTTP GET requests to these sites. Attackers often try to trick users into
visiting these sites and entering their personal information.

3. Inspect suspicious HTTP POST requests: Phishing attacks often involve the victim

unknowingly sending information to the attacker (such as login credentials, credit card
numbers, etc.). These are often sent via HTTP POST requests. If you see an HTTP POST
request to a suspicious or unfamiliar site, it might be a sign of a phishing attempt.

4. Examine the Host and URI fields: The Host and URI fields in the HTTP header can often

provide clues about phishing attacks. Look for any domains that appear to be
impersonating legitimate sites, especially if they're slightly misspelled or use
alternative top-level domains (e.g., ".com" vs ".net").

5. Check for unsecured data transmission: If you see sensitive data (such as passwords

or credit card numbers) being transmitted over an unencrypted connection (HTTP
instead of HTTPS), this could be a sign of a phishing attempt.

6. Use threat intelligence databases: Tools like VirusTotal, ThreatMiner, and AlienVault's

OTX can provide information on known phishing URLs and IP addresses. You can cross-
reference the domains and IP addresses found in the pcap file with these databases
to identify potential phishing attempts.

89

▪ Identify Patterns of Advanced Persistent Threat (APT) Activity

Advanced Persistent Threats (APTs) are complex, often state-sponsored cyber-attacks that
persist over a long period, aiming to steal, spy, or disrupt activities. They're usually highly
targeted and sophisticated, leveraging a mix of different tactics and evasion techniques.

Here are some common signs or patterns of APT activity:

1. Unusual Network Traffic: This could be traffic at odd times, an increased amount of
traffic, or traffic to/from strange locations. An APT often communicates with its C2
(command and control) server.

2. Repeated Login Attempts: APTs often attempt to gain higher-level access to make it

easier to navigate and achieve their goal.

3. Indicator of Compromise (IoC): Anomalous files or system behavior can suggest a
system compromise. These include but are not limited to unrecognized processes,
unexpected data bundles, irregularities in system logs, and unaccounted network
connections.

4. Presence of Malware: Often, APTs utilize custom, previously unseen malware. This

includes Remote Access Trojans (RATs), keyloggers, or other types of spyware.

5. Data Exfiltration: A sudden and unexplained increase in data transfers could indicate
data is being sent outside the network.

6. Zero-day vulnerabilities: APTs often exploit zero-day vulnerabilities—flaws in software

that are unknown to the software developers.

7. Spear Phishing Attacks: APTs often use targeted phishing attacks, known as spear-
phishing, to get initial access to the target network.

8. Use of Known Tools: APTs often use tools already present on the system for malicious

purposes, such as PowerShell or WMI.

▪ Identify Lateral Movement in the Network

To detect lateral movement in a network using a pcap (packet capture) file, you need to focus
on the patterns and signs indicative of this behavior. Here's a general process you might follow,
using a network protocol analyzer like Wireshark:

1. Look for Anomalies in Communication Between Hosts: Pay special attention to
communications between hosts within the same network. Lateral movement involves
an attacker moving from one host to another, so you would want to check for unusual
or unexpected communication between hosts.

2. Identify Unusual Protocols and Ports: Lateral movement often involves the use of

protocols like SMB (Server Message Block), RPC (Remote Procedure Call), RDP
(Remote Desktop Protocol), and SSH (Secure Shell). Look for traffic using these
protocols, and check whether it's expected for your network.

90

3. Check for Multiple Failed Logins Followed by a Success: This could indicate an

attacker using brute-force or password spraying attacks to gain access to another
system on the network.

4. Scan for Network Scanning or Enumeration: Techniques like ARP scanning, ICMP

sweeping, or attempts to list and query shared resources, are often used by attackers
to discover other hosts in the network.

5. Investigate Suspicious or Repeated Access to Admin Shares: Access to admin shares

(like C$ or ADMIN$) or frequent use of tools like PsExec can also indicate lateral
movement attempts.

6. Check for Kerberos Golden/Silver Ticket Activities: In Windows environments,

unusually high counts of Kerberos TGT (Ticket Granting Ticket) requests or evidence of
Kerberos protocol anomalies could indicate Golden or Silver Ticket attacks, which are
often used in lateral movement.

7. Use of Tools and Commands for Lateral Movement: Look for signs of tools often used

in lateral movement, like Mimikatz, or commands used for remote execution, like at,
schtasks, psexec, etc.

91

TCPDump
TCPdump is an open-source packet sniffer that operates on a command-line interface. It allows users
to capture or 'sniff' network traffic on the wire, which can then be analyzed for various purposes. For
malware analysts, tcpdump's value lies in its ability to capture packets that can reveal how a particular
malware is behaving, what data it is sending, or what command and control servers it communicates
with.

TCPdump uses the libpcap library to capture network traffic, and its functionality can be extended
using Berkeley Packet Filter (BPF) syntax to create complex and powerful capture filters.

Hands-on Examples

Step 1: Set Up a Controlled Environment.

Step 2: Use tcpdump to begin capturing network traffic. Choose the interface using the -D flag.

Step 3: Choose the interface to use for capture, using the -i flag.

Step 4: Execute the Malware. Run the Malware and observe the network traffic it generates.

Step 5: Analyze the Traffic. Look for any suspicious activities such as frequent connections to a specific
IP, unusual data transfer, or use of uncommon ports.

Step 6: Document and Analyze. Record your observations and analyze Delta's network behavior.

92

TCPDump Packet Capturing Options

Flag Syntax Description

-i any tcpdump -i any Capture from all interfaces

-i eth0 tcpdump -i eth0 Capture from specific interface (Ex Eth0)

-c tcpdump -i eth0 -c 10 Capture first 10 packets and exit

-D tcpdump -D Show available interfaces

-A tcpdump -i eth0 -A Print in ASCII

-w tcpdump -i eth0 -w tcpdump.txt Save capture to a file

-r tcpdump -r tcpdump.pcap Read and analyze saved capture file

-n tcpdump -n -i eth0 Do not resolve host names

tcp tcpdump -i eth0 tcp Capture TCP packets only

port tcpdump -i eth0 port 80 Capture traffic from a defined port only

host tcpdump host 192.168.1.100 Capture packets from specific host

net tcpdump net 10.1.1.0/16 Capture files from network subnet

src tcpdump src 10.1.1.100 Capture from a specific source address

dst tcpdump dst 10.1.1.100 Capture from a specific destination address

<service> tcpdump http Filter traffic based on a port number for a service

<port> tcpdump port 80 Filter traffic based on a service

port range tcpdump portrange 21-125 Filter based on port range

-S tcpdump -S http Display entire packet

ipv6 tcpdunp -IPV6 Show only IPV6 packets

-d tcpdump -d tcpdump.pcap Display human readable form in standard output

-F tcpdump -F tcpdump.pcap Use the given file as input for filter

-I tcpdump -I eth0 Set interface as monitor mode

-L tcpdump -L Display data link types for the interface

-K tcpdump -K tcpdump.pcap Do not verify checksum

-p tcpdump -p -i eth0 Not capturing in promiscuous mode

Logical Operators

Operator Syntax Example Description

AND and, && tcpdump -n src 192.168.1.1 and dst
port 21

Combine filtering options

OR or tcpdump dst 10.1.1.1 or icmp Both conditions will be displayed

EXCEPT not, ! tcpdump dst 10.1.1.1 and not icmp Negation of the condition

LESS < tcpdump <32 Shows packets size less than 32

GREATER > tcpdump >=32 Shows packets size greater than 32

Display / Output Options

Switch Description

-q Quite and less verbose mode display less details

-t Do not print time stamp details in dump

-v Little verbose output

-vv More verbose output

93

NetworkMiner
NetworkMiner is a popular open-source network forensic analysis tool designed to capture, analyze,
and extract evidence from network traffic. It is used by network administrators, security professionals,
and digital forensics experts to parse pcap files and perform live traffic analysis on both wired and
wireless networks.

Features of NetworkMiner:

• Passive network sniffing

• Pcap file parsing and analysis

• Protocol analysis, including HTTP, FTP, SMB, and SMTP

• File extraction and reconstruction

• Host and user identification

• Connection and session analysis

• GeoIP mapping

• OS and browser fingerprinting

• Encryption detection

Installation

Visit the official NetworkMiner website and download the latest version.
https://www.netresec.com/?page=NetworkMiner

To capture live network traffic using NetworkMiner, follow these steps:
1. Run NetworkMiner as an administrator (Windows) or with root privileges (Linux).
2. Click on the 'Interfaces' tab.
3. Select the network interface you want to capture traffic from.
4. Click the 'Start' button to begin the capture.

https://www.netresec.com/?page=NetworkMiner

94

To analyze pcap files with NetworkMiner, follow these steps:

1. Launch NetworkMiner.
2. Click 'File' > 'Open' in the menu bar.
3. Browse to the location of the pcap file and open it.

4. Navigating the Tabs:

• Hosts: Displays information about hosts detected in the network traffic, such as IP addresses,
hostnames, and operating systems.

• Files: Lists all files extracted from the network traffic, including images, documents, and
executables.

• Messages: Shows email, chat, and social media messages found in the network traffic.

• Sessions: Provides an overview of network sessions and their associated metadata.

• DNS: Presents DNS queries and responses extracted from the network traffic.

• Parameters: Lists HTTP GET and POST parameters, as well as FTP commands and responses.

• Anomalies: Displays potential security issues, such as unusual traffic patterns or protocol
anomalies.

Techniques for Network Traffic Analysis

Analyzing network traffic involves several techniques, each suitable for different scenarios. These
techniques include:

1. Packet Analysis: This involves examining the individual packets of data that are sent across a
network.

2. Flow Analysis: This technique examines the 'flow' of traffic between network hosts.
3. Log Analysis: This involves examining log entries from devices such as routers, firewalls, and

servers to identify patterns or detect anomalies.
4. Statistical Analysis: This technique involves looking at network traffic statistically to identify

patterns or anomalies.

95

SSL/TLS Traffic Decryption and Inspection

Introduction to SSL/TLS
SSL was developed by Netscape Communications Corporation in the mid-1990s to secure web traffic,
specifically to protect communication between web browsers and servers. At a time when the Internet
was expanding rapidly, the need for a secure protocol to safeguard sensitive data being transmitted
over this network became apparent. This was the impetus behind the creation of SSL.

The initial version of SSL, known as SSL 1.0, was never publicly released due to severe security flaws.
Netscape then promptly developed and released SSL 2.0 in 1995. This version, while an improvement,
still had significant security issues. In response to these vulnerabilities, Netscape made considerable
improvements and released SSL 3.0 in 1996.

Birth of TLS

In 1999, the Internet Engineering Task Force (IETF), an open standards organization, took over the
protocol to standardize it. They made several changes to SSL 3.0 and released it as TLS 1.0. The primary
motivation for these changes was to address the security issues that persisted in SSL 3.0 and to develop
a protocol that would be widely accepted and implemented across the Internet.

While TLS 1.0 is technically a new version, it's largely similar to SSL 3.0 and even maintains backward
compatibility. However, the name change represented the shift in control of the protocol's
development from a single company (Netscape) to an open standards organization (IETF).

Evolution of TLS

Since the release of TLS 1.0, the protocol has undergone several revisions to improve security and add
new features:

• TLS 1.1 (2006): Introduced to address several vulnerabilities in TLS 1.0, including protection
against Cipher Block Chaining (CBC) attacks.

• TLS 1.2 (2008): Added authenticated encryption and support for more secure hash functions
like SHA-256.

• TLS 1.3 (201 3): Represents a significant update, simplifying the protocol and increasing
security. It reduces the number of round trips required for the handshake process, removes
support for insecure and obsolete features, and enforces the use of forward secrecy, among
other improvements.

96

SSL/TLS Handshake Process
The SSL/TLS process begins with what is known as a "handshake". This series of exchanges between
client and server establishes the parameters of the secure session:

1. ClientHello: The client sends a list of supported cipher suites and a random number
(ClientRandom).

2. ServerHello: The server responds with the chosen cipher suite, another random number

(ServerRandom), and the server's digital certificate. This certificate contains the server's public
key.

3. Client Verification and Key Exchange: The client verifies the server's certificate with a

Certificate Authority (CA). If the certificate is valid, the client uses the server's public key to
encrypt a new random number (PreMaster Secret) and sends it to the server.

4. Shared Secret Generation: Both client and server use the PreMaster Secret and the previously

exchanged random numbers to compute the same symmetric session key, also called the
"master secret".

5. At The End: Both sides exchange messages to confirm that the handshake was successful and

that the session will now continue using the symmetric key for encryption.

Understanding SSL/TLS Encryption Algorithms

Symmetric Encryption

Symmetric encryption, also known as secret-key encryption, involves the use of a single key for both
encryption and decryption of data. This key is shared between the communicating entities during the
SSL/TLS handshake process. Symmetric encryption is relatively fast and efficient, making it suitable for
encrypting large amounts of data.

Examples of symmetric encryption algorithms used in SSL/TLS include:

1. Advanced Encryption Standard (AES): It is the most widely used symmetric encryption
algorithm due to its high level of security and efficiency. AES supports key sizes of 128, 192, or
256 bits.

2. Triple Data Encryption Standard (3DES): An older algorithm that applies the older Data

Encryption Standard (DES) algorithm three times to each data block. It is considered less
secure than AES and is typically used only when necessary for compatibility with older systems.

Asymmetric Encryption

Asymmetric encryption, or public-key encryption, uses two different but mathematically linked keys:
one private and one public. The public key is used to encrypt data, and the corresponding private key
is used to decrypt it.

97

Asymmetric encryption is typically slower than symmetric encryption but provides a practical way to
solve the key distribution problem (i.e., securely providing the encryption key to the party that needs
to decrypt the data).

In the context of SSL/TLS, asymmetric encryption is primarily used during the handshake to securely
establish the symmetric key that will be used for the remainder of the session. Examples of asymmetric
encryption algorithms include:

1. RSA (Rivest-Shamir-Adleman): This was the first practical public-key encryption algorithm and
is widely used in SSL/TLS for key exchange.

2. Diffie-Hellman (DH): This algorithm allows two parties, each having a public-private key pair,

to establish a shared secret key over an insecure channel. This shared secret can then be used
as the key for a symmetric encryption algorithm.

3. Elliptic Curve Diffie-Hellman (ECDH): This is a variant of the Diffie-Hellman protocol that uses

elliptic curve cryptography. It provides the same functionality as Diffie-Hellman but is more
efficient and secure.

Hashing Algorithms

In addition to encryption algorithms, SSL/TLS protocols also use hashing algorithms to ensure data
integrity. A hashing algorithm transforms input data into a fixed-size string of characters, which is a
hash value.

Hashing is used in the creation of digital signatures and message authentication codes (MACs) to verify
data integrity and authenticity. Examples of hashing algorithms used in SSL/TLS include:

1. Secure Hash Algorithm (SHA): The family of SHA algorithms, including SHA-0, SHA-1, SHA-2,
and SHA-3. Of these, SHA-1 is now considered insecure and is being phased out in favor of
SHA-2 and SHA-3.

2. Message Digest Algorithm 5 (MD5): An older algorithm that is no longer considered secure

against determined attacks.

98

SSL/TLS Decryption with Wireshark

To inspect your own encrypted SSL/TLS traffic via Wireshark, you can use a method where the web
browser logs SSL session keys to a file. These keys can then be used in Wireshark to decrypt the SSL/TLS
traffic. This process is possible with Firefox and Chrome.

Here's how you can do it:

1. Setup the Environment Variable

a. Press the Windows key, type "Environment Variables", and press Enter.

b. Click on "Environment Variables" in the System Properties window.

99

c. Click on "New" under User variables.

d. Set "SSLKEYLOGFILE" as the Variable name and provide a full path to the log file where you
want to save the keys as the Variable value, e.g., "C:\Users\<username>\Desktop\keys.log".

e. Click "OK" and "Apply" to save the settings.

2. Restart your Browser

Close your browser completely, including all tabs and windows, then re-open it. Only sessions
initiated after setting the environment variable will be logged.

3. Collect the Session Keys

Use the browser to access the site you're interested in. The browser will automatically append
session key data to the log file you specified each time it establishes a new SSL/TLS session.

100

4. Decrypting SSL/TLS Traffic:

Once you have your log file, you can use it in Wireshark to decrypt captured traffic:

a. Open Wireshark, go to Edit > Preferences.
b. In the Preferences window, expand Protocols.
c. Scroll down and select TLS.
d. In the (Pre)-Master-Secret log filename field, provide the path to your SSLKEYLOGFILE.

Now, Wireshark is able to decrypt SSL/TLS traffic that was captured while the browser was writing keys
to the file.

101

SSL/TLS Decryption with SSLsplit

SSLsplit is a tool for man-in-the-middle attacks against SSL/TLS encrypted network connections. It's
quite potent for network debugging, analysis, and penetration testing.

Here is a step-by-step guide on how to perform SSL/TLS decryption with SSLsplit:

1. A Linux machine: This will act as the intercepting machine. We'll use Kali Linux as it comes
with SSLsplit preinstalled.

2. A target machine: This could be any device that you have permission to test, such as your

personal computer, laptop, or smartphone.

3. Network setup: Both the intercepting machine and the target device should be connected to
the same network.

Steps

1. Install SSLsplit

While SSLsplit comes preinstalled with Kali Linux, you can install it manually if needed:

2. Create a new CA certificate

Next, generate a self-signed CA certificate and private key. SSLsplit will use this certificate to intercept
and decrypt SSL traffic.

sudo apt-get install sslsplit

mkdir -p /root/ca/
cd /root/ca/
openssl genrsa -out ca.key 4096
openssl req -new -x509 -days 1826 -key ca.key -out ca.crt

102

3. Install the new CA certificate on the target machine

The ca.key and ca.crt files are respectively a private key and a certificate, which can be used for SSL/TLS
encryption and verification. In Windows, you can install these certificates in the certificate store using
the Microsoft Management Console (MMC):

1. Press Windows + R, type mmc in the Run dialog, and click OK. This will open Microsoft
Management Console.

2. In the Console, go to File > Add/Remove Snap-in (or press Ctrl+M).

3. In the Add or Remove Snap-ins window, select Certificates in the list of Available snap-ins, and

then click the Add > button.

4. In the Certificates snap-in window, select Computer account (if you want to manage certificate
for the whole system) and click Next.

5. In the Select Computer window, leave Local computer: (the computer this console is running
on) selected, and click Finish.

103

6. Click OK in the Add or Remove Snap-ins window to return to the main Console.

7. In the Console, expand the Certificates (Local Computer) entry in the left pane.

8. Right-click on Trusted Root Certification Authorities, go to All Tasks, and then click on Import....

9. In the Certificate Import Wizard, click Next.

10. In the File to Import page, click Browse... and navigate to the location of your ca.crt file. You
might need to change the file type filter to All Files (*.*) in order to see your file.

11. After selecting the ca.crt file, click Next.

12. In the Certificate Store page, leave Place all certificates in the following store selected with
Trusted Root Certification Authorities, and click Next.

13. Click Finish to complete the wizard. You should see a message saying "The import was

successful."

104

4. Set up IP forwarding and iptables rules

You need to enable IP forwarding to route all traffic through the intercepting machine. Additionally,
set iptables rules to redirect SSL traffic to the port where SSLsplit is listening.

• echo 1 > /proc/sys/net/ipv4/ip_forward: This command enables IP forwarding on the system.
When IP forwarding is enabled, the system can pass incoming network packets to another
system. This is typically used when you want to turn your system into a router, where it will
take packets it receives and send them on to their intended destination. Here echo 1 is writing
the value 1 to the file /proc/sys/net/ipv4/ip_forward, which controls the IP forwarding setting.

• iptables -t nat -F: This command flushes (clears) all existing rules in the "nat" table of the
iptables configuration. iptables is the standard firewall used by most Linux systems. The "nat"
table is used to set up Network Address Translation (NAT) rules, which allow the system to
map one IP address space into another.

• iptables -t nat -A POSTROUTING -j MASQUERADE: This command appends a rule to the "nat"
table in the "POSTROUTING" chain. The -j MASQUERADE option tells iptables to mask the
source IP address of outgoing packets with the IP address of the outgoing interface. This is
typically used when you want to allow a system on a private network to communicate with
the outside world, and the system's internal, private IP address is not routable on the public
internet.

• iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 8080: This command
appends a rule to the "nat" table in the "PREROUTING" chain. It specifies that any incoming
TCP packets destined for port 80 should be redirected to port 8080 instead. This could be used,
for example, if you have a web server running on port 8080, but you want to make it accessible
from the standard HTTP port (80).

• iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-port 8443: This command
is similar to the previous one, but it sets up a redirect from port 443 (the standard HTTPS port)
to port 8443. This could be used if you have a web server running on port 8443, but you want
to make it accessible from the standard HTTPS port (443).

These commands collectively would turn a Linux system into a kind of router, capable of forwarding
traffic and translating network addresses. They also configure port redirection, which can be useful for
making services accessible on non-standard ports.

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -F
iptables -t nat -A POSTROUTING -j MASQUERADE
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 8080
iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-port 8443

105

5. Run SSLsplit

Now, you're ready to start SSLsplit. The following command will start SSLsplit in debug mode, log all
output to the console, and use the previously created CA certificate.

• sslsplit: This is the command to start the tool.

• -D: This option is for debug mode. It enables verbose logging.

• -l connections.log: This specifies a log file where all connections will be logged.

• -j /tmp/sslsplit/: This option specifies the directory where SSLsplit will chdir (change directory)
to after the startup. This is useful when running SSLsplit as a daemon, using -d.

• -M ssl_key_logfile: This option enables logging of master keys in the format used by the
SSLKEYLOGFILE environment variable of various browsers. This can be used to decrypt packet
captures.

• -S logdir/: The -S option specifies the directory for storing content log files for each connection.
SSLsplit creates one file per connection in this case, containing all data transferred over the
connection as a single file. If a connection carries multiple SSL connections over its lifetime (as
is the case with SSL/TLS session resumption or with connection reuse in HTTP-based
protocols), all of them get logged into the same file.

• -k ca/ca.key -c ca/ca.crt: These flags are used to specify the private key and certificate that
will be used to perform the man-in-the-middle attack. These will be used to impersonate the
real servers and re-encrypt the traffic after it has been intercepted and possibly logged. In this
case, the key file is /root/ca/ca.key and the certificate file is /root/ca/ca.crt.

• ssl 0.0.0.0 8443 tcp 0.0.0.0 8080: This is the specification of what kinds of connections to
intercept and where to listen for them. The ssl 0.0.0.0 8443 part means that it will intercept
SSL traffic on all network interfaces (0.0.0.0) at port 8443. The tcp 0.0.0.0 8080 part means
that it will intercept TCP traffic on all network interfaces at port 8080.

6. Set up the intercepting machine as the gateway

On the target device, change the network settings to use the intercepting machine as the gateway. This
will vary by device and OS, so ensure to look up the specific instructions for your target device.

mkdir /tmp/sslsplit/
mkdir logdir

sslsplit -D -l connections.log -j /tmp/sslsplit/ -M ssl_key_logfile -S logdir/ -k /root/ca/ca.key -c /root/ca/ca.crt ssl 0.0.0.0
8443 tcp 0.0.0.0 8080

106

7. Test the setup

At this point, all SSL traffic from the target device should be routed through the intercepting machine
and decrypted by SSLsplit. To test the setup, try browsing HTTPS sites on the target device. You should
see the SSL traffic in the SSLsplit console on the intercepting machine.

Remember to reset all changes to their original state after your testing. This includes network settings
on the target device and IP forwarding/iptables rules on the intercepting machine.

In addition, remove the CA certificate from the target device to prevent further trust.

echo 0 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -F

107

SSL/TLS Decryption for Incident Response and Forensics
During a security incident, the ability to inspect encrypted network traffic can provide invaluable
insights into the nature of the attack, the affected systems, and the extent of the damage. Incident
response teams can leverage SSL/TLS decryption to:

1. Identify Indicators of Compromise (IoCs): SSL/TLS decryption can help reveal malicious
command and control communications or data exfiltration attempts.

2. Establish a timeline of events: Decrypting network traffic allows teams to identify when a

compromise may have first occurred.

3. Attribute the attack: SSL/TLS decryption might yield clues about the perpetrators, such as IP
addresses, domain names, or specific malware signatures.

SSL/TLS Decryption in Digital Forensics

In the aftermath of a security incident, digital forensics experts often need to decrypt SSL/TLS traffic
as part of their investigations to:

1. Recover Evidence: Decryption can unveil evidence critical to understanding how an attack was
conducted.

2. Analyze Malware: Malware often uses SSL/TLS encryption. Decrypting this traffic can provide

insight into the malware's operation.

Example: SSL/TLS Decryption in Incident Response

Consider a scenario where an organization's intrusion detection system (IDS) alerts the security team
about potential command and control (C2) traffic. The traffic is encrypted with SSL/TLS, making it
challenging to understand the potential threat.

1. Capture Traffic: The team captures the network traffic for further analysis.

2. Decrypt Traffic: Using the organization's private keys, the security team uses a tool like
Wireshark to decrypt the SSL/TLS traffic.

3. Analyze Traffic: Post decryption, the team can see the contents of the communication,

confirming it as C2 traffic. The team now has useful information about the malware, such as
the C2 server's address and the commands being sent.

Exercise: Assume you're part of an incident response team dealing with a security incident. Write down
the steps you'd take, highlighting where SSL/TLS decryption might be beneficial.

Exercise: Using a PCAP file, practice using Wireshark to inspect network traffic. Focus on identifying
potentially suspicious encrypted traffic.

Exercise: Experiment with SSLsplit in a controlled and ethical environment. Analyze how it can be used
in real-world incident response scenarios.

108

Memory Analysis for Malware Analysis

Overview of Memory Analysis
Memory analysis is a powerful technique in malware analysis and incident response, used to gain
insight into the behavior and intentions of a malicious program. It involves the examination of a
system's volatile memory (RAM) to identify signs of compromise or suspicious activity. Memory
analysis can provide a wealth of information about running processes, open network connections,
loaded modules, and more, which might not be evident from disk-based analysis.

Basics of Memory Analysis

Malware often operates in a system's memory to avoid detection from disk-based security solutions.
It can perform malicious activities, like hiding processes, injecting code into other running processes,
and maintaining persistence, without leaving any trace on the hard disk.

Memory analysis involves capturing a snapshot of the system's RAM, typically in the form of a memory
dump. Tools like Volatility can analyze these memory dumps, providing insight into the state of the
system at the time of the snapshot. For instance, they can list the running processes, identify network
connections, or extract malware binaries.

Exercise: Capture a Memory Dump
For this task, we will use a tool called WinPmem to capture a memory dump from a Windows system.

Follow these steps:

1. Download WinPmem from the official repository.
2. Run the executable as administrator.
3. Select the destination file for the memory dump.

The resulting file is a snapshot of your system’s memory, ready to be analyzed.

Process Analysis

One of the primary uses of memory analysis in malware investigations is to examine running processes.
Malware often injects malicious code into other processes to disguise its activities. By investigating
each process and its associated memory space, you can often uncover such injections.

109

Memory Acquisition Techniques
Memory acquisition is a critical first step in malware analysis and digital forensics. The objective is to
collect a snapshot of a system's volatile memory (RAM) for further investigation.

Overview of Memory Acquisition

Memory acquisition is the process of capturing a copy of the physical or virtual memory of a computer
system. It aims to retain the most accurate snapshot of the system's state at a particular moment. This
snapshot, also known as a memory dump or memory image, is then used for analysis.

Physical Memory: This is the actual RAM (Random Access Memory) installed on your computer. It's a
finite resource, and it's where your programs and data reside when they're actively being used.
Physical memory is much faster to access than disk storage. When an operating system is running a
program, the binary data of that program (and any data it's using) are loaded into physical memory.

Virtual Memory: This is a technique that operating systems use to extend the apparent amount of
physical memory available, and to isolate processes from each other. Each process running on your
computer sees a "virtual" address space that it believes is all its own. These addresses are then
translated to physical memory addresses by the hardware and the operating system. If the system runs
out of physical memory, it can use a section of the hard drive as a kind of "overflow" space. This area
is called the "swap" space or "page file".
Virtual memory has several benefits:

1. Process Isolation: Virtual memory ensures that each process has its own private address
space, which enhances the security and stability of the system. This means that a bug in one
program can't corrupt the data of another program, and programs can't access the memory
used by the operating system.

2. Effective Memory Management: Virtual memory allows the system to use physical memory

more efficiently. Parts of a program's memory that aren't currently in use can be temporarily
moved to the hard drive, freeing up physical memory for other programs. When the original
program needs that data again, it can be moved back into physical memory.

3. Simplified Programming: Because each program gets its own private address space,

programmers can write code without having to worry about where in physical memory their
data will end up. This makes programming much simpler.

Using virtual memory can also have downsides. Accessing data in the swap space is much slower than
accessing data in physical memory, so if a system has to "swap" data frequently because it's low on
physical memory, this can significantly slow down the system. This situation is often referred to as
"thrashing".

Memory Acquisition Techniques

Several techniques can be used to acquire memory from a system:

1. Hardware-based acquisition: In this technique, a hardware device is used to capture memory.
These devices are often connected to the system via the FireWire port and are generally more
reliable but can be expensive and difficult to use.

110

2. Software-based acquisition: In this method, a software tool is used to acquire the memory.
These tools are often more user-friendly and cheaper than hardware-based methods but can
potentially be detected or blocked by malware.

Live vs. Dead Memory Acquisition

Memory acquisition can occur while the system is running (live acquisition) or after it has been
powered off (dead acquisition). Live acquisition has the advantage of capturing volatile data that could
be lost when the system is powered off, but there's a risk of altering the system state. Dead acquisition,
on the other hand, doesn't pose a risk of modifying the system state but may not capture all relevant
data.

Secure Memory Acquisition

To maintain the integrity of the acquired memory and ensure the reliability of your analysis, it's
important to follow best practices for secure memory acquisition. These include:

1. Using trusted and validated tools: Make sure you're using reliable and tested memory
acquisition tools to minimize the risk of memory corruption or manipulation.

2. Ensuring non-volatile storage: Store the acquired memory images on non-volatile and secure

storage media to prevent data loss or tampering.
3. Documenting the acquisition process: Maintain a detailed log of your actions during the

acquisition process, including the time, the used tool, the system state, and any anomalies or
errors encountered.

Exercise: Documenting a Memory Acquisition

1. Conduct a memory acquisition using the previously mentioned DumpIt tool.
2. Document your process, including the time, the steps you followed, and any issues you

encountered.
3. Store the memory image and your documentation securely.

Volatility
The analysis of a system's memory can yield invaluable insights when investigating potential malware
threats. Several specialized tools have been developed to assist in this process, making it more
accessible and manageable.

Overview of Memory Analysis Tools

Memory analysis tools provide the means to dig deep into a system's memory, extracting vital
information about running processes, network connections, and other system activities. This data can
be used to identify suspicious or malicious behavior that may not be apparent through other forms of
analysis.

111

Volatility 3

Volatility 3 is an open-source memory forensics framework that allows investigators to extract digital
artifacts from volatile memory (RAM) and analyze them for incident response, malware analysis, and
other investigations.

Installation

You can download Volatility 3 from the official GitHub repository:

Volatility 3 is written in Python, so you'll need a Python environment to run it. If you don't have Python
installed, you can install it with a package manager like apt for Ubuntu:

Identifying the Profile

In Volatility 3, profiles are handled automatically and you do not need to specify them manually as in
Volatility 2. If you do want to manually set a profile, you can use windows.info.Info to identify the
correct profile:

git clone https://github.com/volatilityfoundation/volatility3.git
cd volatility3
pip3 install -r requirements.txt

sudo apt install python3 python3-pip

112

Basic Commands

Here are some basic commands for memory analysis:

1. List processes:

python vol.py -f dump.mem windows.pslist.PsList

python vol.py -f dump.mem windows.psscan

python vol.py -f dump.mem windows.pstree

2. List network connections:

python vol.py -f dump.mem windows.netscan.NetScan

113

python vol.py -f dump.mem windows.netstat

3. List command history (for cmd.exe):

python vol.py -f dump.mem windows.cmdline.CmdLine

4. List loaded DLLs for a specific process:

python vol.py -f dump.mem windows.dlllist.DllList --pid <PID>

114

Advanced Commands

Here are some more advanced commands:

1. Extracting dump files:

python vol.py -f dump.mem -o <outputDir> windows.memmap.Memmap --pid <PID> --dump

2. Dumping process memory:

python vol.py -f dump.mem -o <outputDir> windows.dumpfiles --pid <PID>

115

3. List registry hives:

python vol.py -f dump.mem windows.registry.hivelist

4. Extracting registry hives:

python vol.py -f dump.mem -o output_dir windows.hivelist.HiveList --dump

5. Checking Registry keys:

Python vol.py -f dump.mem windows.registry.printkey --key <Key_Path>

6. Dumping user hashes:

python vol.py -f dump.mem windows.hashdump.Hashdump

7. Scanning for files:

python vol.py -f dump.mem windows.filescan

116

8. Other Commands

▪ python vol.py -f dump.mem windows.lsadump: This command is used to dump the Local
Security Authority (LSA) secrets. This can be useful for malware analysts because the LSA
secrets can contain cached credentials, which some types of malware might use for lateral
movement or privilege escalation.

▪ python vol.py -f dump.mem windows.svcscan.SvcScan: This command scans for Windows
services. Malware often creates or modifies services to achieve persistence, so this can be
useful for determining whether a malware infection has occurred and how it maintains its
presence on the system.

▪ python vol.py -f dump.mem windows.handles.Handles --pid 636: This command lists all
handles opened by a particular process. Handles can refer to files, registry keys, processes, or
other system resources. This can reveal what a process was accessing at the time of the
memory dump, which can be useful for understanding what a malicious process was doing.

▪ python vol.py -f dump.mem windows.malfind.Malfind --pid 4260: This command finds and
extracts potentially malicious injected code segments from a specific process. This can help
analysts locate and extract the actual payload of a malware that uses code injection for
evasion.

▪ python vol.py -f dump.mem windows.registry.userassist.UserAssist: This command extracts
information about executed programs stored in the UserAssist registry key. This can help
analysts to construct a timeline of user activity, which can be useful in determining when a
malware infection may have occurred.

117

▪ python vol.py -f dump.mem windows.poolscanner.PoolScanner: This command scans for
pool tags in kernel memory. This can be helpful for finding hidden or unlinked kernel objects,
which could be a sign of rootkit activity.

▪ python vol.py -f dump.mem windows.registry.certificates.Certificates: This command
extracts information about system certificates from the registry. Malware might add or
manipulate certificates to facilitate man-in-the-middle attacks or to gain trust on the system.

▪ python vol.py -f dump.mem windows.vadinfo.VadInfo: This command provides information
about the Virtual Address Descriptors (VAD) tree. The VAD tree can show memory mappings,
which could reveal signs of injected code or unpacked binaries in memory.

118

▪ python vol.py -f dump.mem windows.envars.Envars --pid 636: This command lists the
environment variables of a specific process. Malware often manipulates environment
variables for various purposes such as hiding its presence, finding paths to certain system
resources, or determining system configuration details.

▪ python vol.py -f dump.mem windows.mftscan.MFTScan: This command scans for Master File
Table (MFT) entries in memory. MFT entries can provide valuable information about files that
were present on the system at the time of the memory dump, which could include malware
artifacts or signs of user activity.

119

Helpful Tips

▪ Each Volatility plugin has its own set of options. You can see these by typing python vol.py
<Plugin> --help.

▪ The list of all available plugins can be obtained with python vol.py --help.

120

Volatility 2.6
Volatility 2.6 is the culmination of years of development and refinement, making it the go-to tool for
many digital forensics professionals. This version supports a wide range of plugins for analyzing
different aspects of a system's memory, such as processes, network connections, and loaded modules.
It also supports a variety of profiles for different operating systems, including Windows, Linux, and Mac
OS X.

Selecting the Right Profile

Volatility profiles are crucial as they provide Volatility with necessary system information about the
system from which the memory dump was obtained. To get a list of supported profiles, use the
following command:

Investigating Processes

With the right profile, you can examine running processes. This can be useful in identifying any
suspicious or malware processes. Use the commands pslist, psscan, pstree:

121

This will return a list of all active processes at the time the memory image was taken.

Network Connections

In the case of a network attack, you may want to analyze active network connections. The 'netscan'
plugin can provide this information:

This will return a list of network connections, including the process, protocol, local and remote
addresses, and state of the connection. Other Volatility commands for network – connections,
connscan, sockets, sockscan.

122

Registry Analysis

hivelist can be used to list the registry hives found in memory. It provides information about their
names and locations.

The printkey command is used to display the keys and values from a specific path in the registry.

hashdump: The hashdump command is used to extract password hashes from the SAM (Security
Accounts Manager) registry hive. These hashes can then be used for offline password cracking.

The userassist plugin is used to display the UserAssist registry keys, which store information about the
executable files that the user has started. This can provide insight into the user's behavior on the
system.

123

The command dumpregistry is used to dump the entire Windows registry from memory. This allows
for further offline analysis and can provide a wealth of information about the system's configuration
and the applications installed on it.

Malware can hide in various places within the Windows registry. Here are some common locations:

1. Run Keys: The Run keys are one of the most common places for malware to persist. They cause

programs to run each time a user logs in. These keys are located in:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

2. Explorer Shell Extensions: Malware can also add itself as a shell extension, causing it to be loaded

whenever Explorer is run. The key for this is located at:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Extensions

124

3. Browser Helper Objects (BHOs): These are DLLs that Internet Explorer loads whenever it starts.
The key for BHOs is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects

4. Services: Malware may create a new service or modify an existing one to gain persistence. The key

for services is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

5. AppInit_DLLs: This is a list of DLLs that are loaded by the system into every process that loads

User32.dll. The key for this is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs

6. Winlogon Notify: This key is used to specify DLLs that Winlogon should notify of logon events.

These DLLs can be used by malware to load into the Winlogon process and from there into other
processes that are created. The key for this is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify

7. Image File Execution Options (IFEO): IFEO can be used to debug software but malware can misuse

it to intercept calls to legitimate programs. The key for this is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

125

Loaded Kernel Modules

To examine loaded kernel modules, use the 'modules' plugin:

This can be particularly helpful when investigating a potential rootkit infection.

Envars

The envars plugin is a tool you can use to present the environment variables of a process. It typically
reveals a range of information, including the installed number of CPUs, the hardware architecture, and
various specifics about the process like its current and temporary directories, session name, computer
name, and user name, among other intriguing details.

Procdump

Use the procdump command to extract an executable from a process. If you want to avoid certain
validation measures used during PE header parsing, you can include the --unsafe or -u flags. Beware
that some malicious software may deliberately alter size fields in the PE header to disrupt memory
extraction tools.

126

Filescan

The filescan command is used to detect FILE_OBJECTs in physical memory using a technique called
pool tag scanning. This command is effective at finding open files, even if they are being hidden by a
rootkit, a malicious software that can conceal files on disk and manipulate API functions to hide open
handles in a live system. The output of the filescan command provides various details about the
FILE_OBJECT including its physical offset, file name, the number of pointers and handles to the object,
and the permissions given to the object.

Dumpfiles

For the sake of system performance, files are cached in memory as they are accessed and utilized. This
characteristic of caching makes it a beneficial resource for forensic analysis, as it allows for accurate
retrieval of files that were in active use, unlike file carving which doesn't leverage the way items are
arranged in memory. For performance reasons, files may not be fully mapped in memory, and any
absent sections are padded with zeros. Files that have been extracted from memory can subsequently
be analyzed using external tools.

127

When you use the dumpfiles command in Volatility, it will extract the data associated with a file object
from the memory dump and save it to a file on disk. Depending on the options you use with the
command and the type of the file object, dumpfiles can create one or two files for each file object.

1. .dat files: By default, dumpfiles creates a .dat file for each file object. This file contains the data
from the file object as it is currently in memory. If parts of the file have been paged out to disk
or haven't been loaded into memory at all, the .dat file will not include those parts. The .dat
file gives you a snapshot of the file as it was in memory at the time the memory dump was
taken.

2. .img files: If you use the -i or --include-image option with the dumpfiles command, it will also
create a .img file for each file object. This file includes the complete contents of the file as they
are on disk. This means that the .img file can include parts of the file that were not in memory
at the time the memory dump was taken. However, dumpfiles can only create .img files for file
objects that represent files on the disk of the system the memory dump was taken from. If the
memory dump does not include a full dump of the system's disk, dumpfiles may not be able
to create a .img file.

Important Plugins

"Malfind" is a plugin in the Volatility framework used for memory forensics. This plugin is specifically
designed to find and extract potentially malicious code injected into the memory of a system.
Here's a more detailed explanation:

1. Process Memory Scanning: Malfind scans the memory of a running process. It identifies areas
of memory that may have been altered by malware or malicious injections. This is a common
technique used by advanced malware to hide its presence from typical anti-virus or anti-
malware scans that may only look at the file system and not in running memory.

2. Memory Protection Verification: Malfind examines the protection levels of memory sections.
It looks for memory regions with protections not typically used by legitimate programs, such
as writeable and executable (WX) memory.

3. Code Extraction: Malfind can extract the suspicious or potentially malicious code it finds in
memory for further analysis. This allows a malware analyst or incident responder to investigate
the nature of the code and potentially determine what type of malware it is and what it's
designed to do.

128

Here's what to look for when executing Malfind in Volatility:

1. Unusual Process: Any unusual processes running on a system could be an indicator of a
malware infection.

2. Anomalous Memory Regions: Look for memory regions with both Write and Execute

permissions (commonly abbreviated as WX). Normal processes usually separate the areas
where they write data from the areas where they execute code, for security reasons. Malware
often needs to write its code to memory and then execute it, leading to WX memory regions.

3. Injected Code: Look for memory sections that don't belong to any known file on disk. This

could be a sign of code injection, a technique commonly used by malware to hide its presence.
Malfind might show a memory section with the "Protection" field set to
PAGE_EXECUTE_READWRITE (indicating it's a WX section), but the "Vad Tag" field set to
"VadS". The "VadS" tag means this memory section is private, and not mapped to any file on
disk, which could mean it's injected code.

4. Unusual Code in Memory Regions: Look for patterns of code that seem out of place. For

instance, a large amount of NOP (no-operation) instructions or shellcode may be a sign of a
buffer overflow or other exploit.

5. Presence of Encryption or Encoding: While looking through the hex dump of a suspicious
memory region, you might notice patterns that suggest the data is encrypted or encoded. For
instance, high entropy data, or common patterns that you've seen before in encrypted data.

6. Suspicious Strings: Use string searching utilities to look for suspicious strings within the

memory dump. They might include IP addresses, URLs, or known malicious commands or
payloads.

For example: ./vol -f dump.vmem --profile=Win7SP1x64 malfind

• Vad Tag: VadS: The tag "VadS" denotes that this memory region is a private memory section,

meaning it's not mapped to a file on disk. This could be a sign of code injection, a technique
used by malware to hide its presence.

• Protection: PAGE_EXECUTE_READWRITE: The region is marked as executable and read/write,
often referred to as WX. This is generally unusual because it means the memory region can be
both written to and executed from, which could be a sign of malicious activity. Normal
processes usually separate the areas where they write data from the areas where they execute
code, for security reasons.

129

• Flags: These are attributes of the memory region. Here's what each flag means:
▪ CommitCharge: 1: This refers to the amount of physical memory and/or page file space

that would be consumed if all the private pages related to this memory region were fully
in use. The unit of measurement is the number of pages, and in this case, it's 1.

▪ MemCommit: 1: This indicates that the memory region is committed, meaning that
physical storage will be allocated for it either in memory or in the paging file on disk.

▪ PrivateMemory: 1: This means the memory region is private to the process, and isn't
shared with any other process.

▪ Protection: 6: This refers to the memory protection level of the memory region when it
was initially allocated. The value 6 corresponds to PAGE_READWRITE, meaning the region
can be both read from and written to.

Virtual Address Descriptors (VAD)

A Virtual Address Descriptor, or VAD, is a data structure used by the Windows operating system to
manage a process's virtual memory. Each VAD describes a region of a process's virtual address space,
providing details such as the starting and ending addresses, the region's protection attributes (e.g.,
whether the region is readable, writable, or executable), and the type of memory region (e.g., free,
reserved, or committed).

In simple words: Imagine you have a large office building. This office building has many rooms (or
suites) where different companies can rent space. The building's management needs a way to keep
track of who is in each room, what they're using it for, and when they can access it.

The Virtual Address Descriptor (VAD) is like the building's management system. Each "room" in this
case, is a section of memory in the computer. The VAD keeps track of what each section of memory is
being used for, who is using it, and what they're allowed to do with it (like read, write, or execute data).
Just like how the building management can tell if a room is being used for an office, a gym, or a
restaurant, the VAD can tell if a section of memory is being used by a web browser, a word processor,
or a piece of malware. It's an essential part of how the computer's operating system manages and
protects its resources.

Exercise: Consider a simple process in your operating system. How might its virtual memory be
divided? What might different regions be used for? Note that the specifics will depend on the process
and the operating system, but try to think broadly.

Significance of VAD in Memory Analysis

VADs are particularly important in the field of memory analysis and forensics. By inspecting a process's
VAD, an analyst can gain insight into the process's memory layout and allocation. This can be crucial
when investigating potential malicious software (malware), as malware often manipulates a process's
memory in specific ways – for instance, through code injection or unpacking techniques.

Exercise: Consider why a malware might want to modify a process's memory. What benefits might it
gain from doing so?

Practical Usage of VAD: Volatility Framework

The Volatility Framework is an open-source collection of tools for performing memory forensics. It
includes several commands related to VADs:

130

▪ vadinfo: This command provides details about the VAD nodes of a process, such as start and

end addresses, protection attributes, and the memory region type.

▪ vadwalk: This command iterates over all VAD nodes in a process's VAD tree, useful for getting
a complete picture of a process's memory layout.

▪ vadtree: This command visualizes the VAD nodes of a process in a tree structure, helping to
understand the structure and organization of a process's memory.

▪ vaddump: This command dumps the content of a specific memory range as defined by a VAD
node. It's useful for extracting potentially malicious code or data from a process's memory.

Exercise: Install the Volatility Framework and get a memory dump from a running process on your
system (note: you might need administrative privileges to do this). Then, use the vadinfo command to
inspect the VAD of the process. What do you see?

Here, -p 1364 specifies the process ID we're interested in. The output will include details about each
VAD node in the process's memory.

Finally, if we spot something suspicious, we could use vaddump to inspect it further:

Here, -D output_dir/ specifies the directory where the dumped memory regions will be stored.

131

Mutantscan

To perform a scan of physical memory for KMUTANT objects using pool tag scanning, you can utilize
the mutantscan command. By default, this command presents all objects, but you have the option to
specify -s or --silent to exclusively display named mutexes. If a mutex owner exists, the CID column will
provide the corresponding process ID and thread ID.

▪ KMUTANT is a structure used by the Windows operating system at the kernel level to represent
a mutex object.

▪ Mutex, short for "mutual exclusion," is a common synchronization mechanism used in
computing to prevent multiple threads or processes from accessing some shared resource
concurrently. Mutexes can be used to ensure that a piece of code or data structure is accessed
by one thread or process at a time, preventing race conditions and data inconsistencies.

Other Useful Tools

Redline
Redline®, FireEye’s premier free endpoint security tool, provides host investigative capabilities to users
to find signs of malicious activity through memory and file analysis and the development of a threat
assessment profile. Use Redline to collect, analyze and filter endpoint data and perform IOC analysis
and hit review. In addition, users of FireEye’s Endpoint Security (HX) can open triage collections directly
in Redline for in-depth analysis, allowing the user to establish the timeline and scope of an incident.
This app runs on Windows only.

132

Understanding Memory Forensics
The process of memory forensics consists of several steps: memory acquisition, memory analysis,
timeline analysis, and finally, reporting.

Memory Acquisition
Memory acquisition is the first step, and it involves collecting a snapshot of the system's memory.

Exercise: Memory Acquisition
Use a tool such as DumpIt or Winpmem to obtain a memory dump of your system.

Memory Analysis
This is where you inspect the memory dump to reveal the system state at the time of acquisition.

Exercise: Memory Analysis
Use a memory analysis tool like Volatility to inspect the memory dump obtained in the previous
exercise.

Timeline Analysis
Timeline analysis involves reconstructing a sequence of events based on data extracted from the
memory dump.

Exercise: Timeline Analysis
Using the data obtained in the previous step, try to reconstruct a timeline of events.

Reporting
Finally, you will need to present your findings in a clear and understandable manner.
Exercise: Comparing Live and Dead Memory Acquisition

1. Conduct a live memory acquisition on a test machine using a tool such as DumpIt.
2. Power off the machine and conduct a dead memory acquisition using a hardware device if

available.
3. Compare the two acquired memory images using a tool like Volatility.

133

Basics of Malware and Its Impact on Memory
Malware often leaves traces in the memory of a system, even if it tries to hide its activities on the hard
drive. It's in memory where malware typically carries out its malicious actions, such as process
injection, privilege escalation, or establishing network connections. Therefore, understanding how
malware impacts memory is critical for malware analysis and memory forensics.

Exercise: Impact of Malware on Memory
Research a known piece of malware and discuss how it impacts the memory of an infected system.
Discuss the indicators of compromise (IOCs) that it leaves in memory.

Malware Techniques in Memory

Various malware techniques can be seen in memory, such as code injection, hooking, and process
hollowing. Code injection involves injecting malicious code into a legitimate process's memory.
Hooking is where malware intercepts system function calls, events, or messages. Process hollowing
occurs when malware creates a new process in a suspended state and replaces its image with one that
is malicious.

Exercise: Malware Techniques in Memory
Choose one malware technique mentioned above and provide a detailed analysis of how it works, its
purpose, and how it could be identified in a memory dump.

Memory Forensics in Malware Analysis

Memory forensics can reveal the presence of malware by highlighting unusual activities in memory. By
analyzing the memory dump of an infected system, an analyst can uncover processes, network
connections, and other system interactions that indicate the presence of malware.

Exercise: Memory Forensics in Malware Analysis
Using a virtual machine, infect the system with a sample malware from a source like "theZoo" (a
repository of live malware). Capture a memory dump using a tool like DumpIt or WinPmem. Then,
analyze the dump using a memory forensics tool like Volatility. Document any signs of the malware
you find.

Understanding Anti-Forensics Techniques

Advanced malware may use anti-forensics techniques to evade detection. These can include
techniques to hide processes, network connections, or other malicious activities in memory.
Recognizing these techniques is critical for successful memory forensics.

Exercise: Understanding Anti-Forensics Techniques
Research an example of malware that uses anti-forensics techniques. Describe how these techniques
work, their impact on memory forensics, and possible countermeasures an analyst can take.

134

Detecting Malware through Memory Analysis
Memory analysis can be an incredibly powerful tool in identifying malware within a system. This
process is integral for discovering malicious software that doesn't write to the disk, as it relies on
inspecting the content of a system's memory to spot indicators of compromise.

Methods of Malware Detection in Memory

Various methods can be used to detect malware in memory:

1. Signature-Based Detection: This method is based on known malware signatures. While
effective against known threats, it's limited in identifying new, unknown malware.

2. Heuristic-Based Detection: This approach uses algorithms and rules to identify common

characteristics of malware. It's more effective in detecting new or unknown threats but can
also lead to false positives.

3. Anomaly-Based Detection: This technique involves establishing a baseline of normal behavior,

then identifying deviations from this baseline as potential malware.

Exercise: Methods of Malware Detection in Memory
Compare the advantages and disadvantages of signature-based, heuristic-based, and anomaly-based
detection methods.

Malware Artifacts in Memory

When malware is active in a system, it often leaves specific artifacts in memory. These can include:

▪ Unusual or unauthorized processes
▪ Strange or unauthorized network connections
▪ Unusual loaded DLLs
▪ Unexpected or hidden APIs or system calls
▪ Evidence of code injection or hooking

Exercise: Malware Artifacts in Memory
Use a memory analysis tool like Volatility on a malware-infected memory dump (ensure to do this in a
safe, isolated environment). Identify as many artifacts as you can that suggest the presence of
malware.

Memory Forensics Tools for Malware Detection
Several memory forensics tools can aid in the detection of malware:

▪ Volatility: An open-source framework for volatile memory analysis. It can extract information
like running processes, network connections, and loaded DLLs.

▪ Rekall: Another open-source tool, similar to Volatility, but with a few differences in the
information it can extract and its command structure.

▪ Memoryze: A free memory forensic software that can acquire and/or analyze memory images.

Exercise: Using Memory Forensics Tools for Malware Detection
Choose one of the tools mentioned above and use it to analyze a memory dump of a machine infected
with malware. Document the steps you took and the conclusions you made from your analysis.

135

Interpreting Memory Artifacts in Malware Analysis
Memory artifacts refer to data remnants left in the system memory (RAM) by running processes and
system activities. In the context of malware analysis, memory artifacts are valuable resources for
analysts because they provide insights into what activities were taking place on the system at the time
the memory was captured.

Memory Artifacts in Malware Analysis

In malware analysis, memory artifacts can provide crucial evidence about a malware's operation and
impact on an infected system. Some key artifacts include:

▪ Running Processes: Malware often runs as a process on an infected system, and analysts can
investigate these processes to understand their purpose and functionality.

▪ Loaded DLLs: Dynamic Link Libraries (DLLs) used by processes can provide further insights
about a malware's functionality.

▪ Network Connections: Active or recently terminated network connections can reveal the
malware's communication channels.

▪ Registry Keys: Many malware types interact with the Windows registry to ensure persistence
or store configuration data.

▪ Unallocated Memory: This could contain remnants of malware that was running but has been
terminated or is trying to hide itself.

Interpreting Memory Artifacts
Memory artifacts can be interpreted in several ways, depending on their type and context:

▪ Process analysis: Investigators analyze the list of running processes, their loaded modules,
parent-child relationships, and associated memory regions.

▪ Network artifacts: These can be interpreted to understand the command and control (C2)
infrastructure of the malware, data exfiltration mechanisms, and other network-based
activities.

▪ Registry artifacts: Interpretation of these can reveal malware's persistence mechanisms,
configurations, and potential changes to the system's configuration.

▪ Unallocated memory artifacts: Investigators may look for strings, file headers, or other data
structures that may suggest malicious activity.

Hands-on with Volatility Framework
Volatility Framework is a powerful tool to extract memory artifacts and perform detailed analysis.

Exercise: Analyzing Artifacts

1. Download a memory image of a known infected system. Use Volatility to list the running
processes.

2. Investigate any suspicious processes. Look at the DLLs loaded by the process and their memory
ranges.

3. Look for parent-child process relationships that look suspicious.
4. Research any unfamiliar IP addresses or ports.
5. Look for any Registry keys or values that look suspicious.

136

Intrusion Detection

Pcap (packet capture) files are one of the most important resources for a network analyst as they
contain a wealth of data about the network's activity. This analysis aids in identifying and mitigating a
wide range of threats.

Section I: Basic Network Analysis Techniques

1. Identifying IP Addresses: We begin with identifying all the IP addresses involved in network
communication. You can use Wireshark's Statistics > Endpoints function for this. It provides a
summary of all source and destination IP addresses.

2. Most Frequently Visited Website: To find the most frequently visited website, use the HTTP

requests present in the pcap file. The 'host' field in the HTTP header indicates the visited
website.

3. Understanding TCP: Transmission Control Protocol (TCP) is a key communication protocol that

enables reliable data exchange between computers. Examine the pcap file for TCP packets
using the Wireshark filter: tcp.

4. ICMP Packet Analysis: Internet Control Message Protocol (ICMP) packets, often used for error

reporting, can be filtered in Wireshark with the filter icmp.

5. Counting HTTP GET and POST Requests: You can use Wireshark filters (http.request.method
== GET or http.request.method == POST) to tally these request types.

6. Listing Unique MAC Addresses: Using the Statistics > Endpoints > Ethernet option in

Wireshark, you can list all unique MAC addresses.

7. Determining Packet Timestamps: The first recorded packet's timestamp can be found at the
top of the packet list in Wireshark.

8. Identifying FTP Traffic: Filter FTP traffic using ftp in Wireshark.

9. Identifying Ports: Source and destination ports can be viewed in the packet details pane under

the respective protocol section.

10. Counting DNS Responses: Use the filter dns.flags.response == 1 to tally DNS responses.

Section II: Intermediate Network Analysis Techniques

1. Identifying TCP Port Scanning: Unusual patterns of TCP traffic such as many SYN packets to
different ports may indicate port scanning activity.

2. Spotting DDoS Activity: Look for an unusually high volume of packets, often of the same type,

destined for the same IP address.

3. Detecting Encrypted Traffic: Encrypted traffic can be spotted by examining the payload of the
TCP or UDP packets for non-readable characters.

137

4. Anomalies in DNS Queries and Responses: Irregular patterns such as repeated queries for
non-existent sites or high numbers of responses could be signs of DNS poisoning or DDoS.

5. Identifying C2 Communication: Look for regular or semi-regular communication to an external

IP address or addresses, possibly on unusual ports.

Section III: Advanced Network Analysis Techniques

1. Identifying APT Activity: Look for signs of long-term, persistent network traffic to external IP
addresses, which could be indicative of an Advanced Persistent Threat (APT).

2. Tracing Malware Delivery and Execution: Evidence might include communication with known

malicious IP addresses or the presence of known malware signatures in packet payloads.

3. Identifying Zero-Day Exploit Attempts: This could be indicated by unusual traffic patterns,
such as repeated failed login attempts followed by a sudden successful login.

4. Analyzing HTTPS Session: Decrypting HTTPS requires the server's private key or a pre-shared

key. Once decrypted, the session can be analyzed like regular HTTP traffic.

5. Detecting Malicious TOR Activity: This can be identified by traffic on TOR's known ports (9001
and 9030), particularly if the volume is high or consistent.

The key to effective network analysis is a blend of theoretical understanding, practical skills, and a
strong sense of curiosity. As you grow more comfortable with the techniques outlined in this chapter,
you'll become increasingly adept at spotting even the most subtle signs of network misbehavior.

138

Command and Control (C2) Infrastructure Analysis

Command and Control (C2) infrastructures represent the means by which threat actors manage and
control compromised systems within a target network. By understanding C2 infrastructure and
learning how to analyze it, network security professionals can identify ongoing attacks, attribute them
to specific threat groups, and disrupt the attacker's activities.

Understanding C2 Infrastructure

A C2 infrastructure typically involves a server controlled by a threat actor, which communicates with
compromised systems (bots) within a target network. The C2 server issues commands to the bots and
receives data in return.

Identifying C2 Traffic

C2 traffic can often be identified by specific characteristics, such as unusual patterns of network
behavior, connections to known malicious IP addresses, or the use of specific protocols or ports.

Exercise: Using a tool like Wireshark, inspect a pcap file with known C2 traffic. Can you identify the C2
communication based on these characteristics?

Analyzing C2 Protocols

Many C2 infrastructures use standard network protocols in unusual ways. For example, HTTP or DNS
might be used to issue commands or exfiltrate data.

Example: A C2 server might issue commands by embedding them in HTTP headers, or exfiltrate data
by encoding it in DNS query strings.

Exercise: Inspect a pcap file with C2 traffic using a protocol analyzer like Wireshark. Can you identify
the commands issued by the C2 server or any data being exfiltrated?

C2 Infrastructure Mapping

By analyzing C2 traffic, you can often identify other elements of the C2 infrastructure, such as
additional C2 servers or compromised systems within the same network.

Example: A sudden surge of traffic to a new IP address could indicate the activation of a secondary C2
server.

Exercise: Analyze a pcap file with known C2 traffic. Can you identify any additional C2 servers or
compromised systems?

Advanced C2 Analysis Techniques

Advanced C2 analysis techniques can involve the use of machine learning to identify patterns of C2
behavior, or sandboxing to safely execute and observe malware communication with its C2 server.

Example: Machine learning algorithms can be trained to recognize patterns of C2 communication, such
as periodic beaconing or the use of specific command sequences.

139

Common Patterns of Malicious Network Traffic

Recognizing malicious network traffic patterns is crucial for efficient network defense. These patterns,
which deviate from normal network behavior, can indicate a cyber attack or threat.

Understanding Malicious Network Traffic

Malicious network traffic refers to the data sent and received across a network that indicates a
potential cyber threat or attack. This can include things like communication with known malicious IPs,
unusual data transfers, or repeated login attempts.

Common Patterns of Malicious Network Traffic

While there are numerous patterns that can indicate malicious network traffic, some of the most
common ones include:

▪ Repeated Failed Login Attempts: This could be a sign of a brute force attack.
▪ Unusual Outbound Traffic: Significant outbound traffic, particularly to unfamiliar IP addresses,

can suggest data exfiltration.
▪ Excessive Network Scanning: This could indicate an attacker trying to find vulnerabilities to

exploit.
▪ Communication with Known Malicious IPs: This is a clear indicator of a potential threat.
▪ Unusual Increase in Network Traffic: An abnormal increase in traffic could suggest a Denial of

Service (DoS) attack.
▪ Multiple Requests for the Same File: This could be a sign of a Slowloris attack, which aims to

exhaust server resources.

Identifying Malicious Network Traffic

Identifying malicious network traffic requires continuous monitoring and analysis of your network.
Tools like Intrusion Detection Systems (IDS) and Security Information and Event Management (SIEM)
systems can be helpful in identifying and alerting on suspicious patterns.

Exercise: Choose a network traffic analysis tool, such as Wireshark or Snort, and use it to analyze a
sample network traffic pcap file. Look for any patterns that could indicate malicious activity.

Deep Packet Inspection for Malware Analysis
Deep Packet Inspection (DPI) is a type of data processing that inspects in detail the data being sent
over a computer network, and usually takes action by blocking, re-routing, or logging it. DPI is
particularly useful in malware analysis, as it allows for a more thorough inspection of network traffic.

Understanding Deep Packet Inspection

Unlike basic packet inspection that only checks the header of packets, DPI examines the data part (or
payload) of the packet. This enables it to spot potential malicious behavior hidden in the network
traffic. DPI can be used to detect various types of malware, including viruses, worms, trojans, and
more.

Exercise: Find examples of different types of malware that DPI can detect. Write a short description of
each, explaining how DPI helps in their detection.

140

Working Mechanism of Deep Packet Inspection

DPI works by closely examining the contents of each packet that passes through a given network point.
It checks the IP headers, payload, identifies protocol types, and can even keep track of network
connections and application session state. By doing so, DPI can identify suspicious patterns, anomalies,
or known malware signatures in the network traffic.

Exercise: Using a network traffic analysis tool like Wireshark, capture some packets from your network.
Try to analyze the different components of these packets.

DPI in Malware Detection

DPI can identify malware communication channels, such as command and control servers (C&C), by
detecting the specific patterns or signatures in the network traffic. It can also identify certain evasion
techniques used by malware, such as tunneling or encryption, which may not be detected by basic
packet inspection.

Exercise: Research some real-world examples where DPI was used to detect malware. What were the
key factors that led to successful detection?
Challenges in DPI

While DPI is a powerful tool for malware analysis, it also has its challenges. The increasing use of
encryption makes DPI less effective as it cannot inspect encrypted traffic. DPI can also impact network
performance due to the deep analysis of each packet. Moreover, privacy concerns arise as DPI has the
potential to reveal sensitive information in the packet's payload.

Task: Use a DPI tool, such as Wireshark with a DPI plugin or a standalone DPI tool, to conduct deep
packet inspection on your network traffic. Identify the different types of data and any potential
anomalies in the traffic.

Signature-based vs Anomaly-based Detection

Signature-based detection involves identifying known threats by comparing network traffic against a
database of known threat signatures. Each signature is a set of rules that describes a specific type of
malware or malicious behavior.

Understanding Anomaly-based Detection

Anomaly-based detection involves identifying unknown threats by detecting abnormal behavior in
network traffic. This method uses machine learning or statistical modeling to establish a baseline of
"normal" network behavior, and then flags deviations from this baseline as potential threats.

Signature-based vs Anomaly-based Detection: A Comparison

While both methods have their place in network traffic analysis, they each have strengths and
weaknesses:

▪ Effectiveness Against Known Threats: Signature-based detection excels at detecting known
threats, but struggles with zero-day attacks or new malware variants.

141

▪ Effectiveness Against Unknown Threats: Anomaly-based detection is better equipped to
detect new or unknown threats, but can generate false positives when legitimate network
behavior deviates from the norm.

▪ Maintenance and Updates: Signature-based systems require regular updates with new threat
signatures, while anomaly-based systems require continuous tuning and retraining of the
baseline model.

Hands-On: Working with Signature-based and Anomaly-based Detection

Understanding these methods in theory is a good start, but to truly grasp their strengths and
weaknesses, it's important to work with them hands-on.

Exercise: Set up a simple IDS using Snort (a signature-based system) and another using an anomaly-
based system of your choice. Use a variety of pcap files to test both systems and compare their
performance.

Task: Evaluate your current network security setup. Does it use signature-based, anomaly-based, or a
combination of both methods? How could it be improved by incorporating elements of the other
method?

Evasion Techniques used by Malware in Network Traffic

Evasion techniques are methods that malware uses to avoid detection or analysis. These can range
from simple obfuscation techniques to complex behaviors that hide malicious activity within seemingly
legitimate network traffic.

Common Evasion Techniques

Here are some common evasion techniques that malware might use:

▪ Encryption and Tunneling: Encrypting the command-and-control communication or tunneling
it through a legitimate protocol can hide the malware's network traffic.

▪ Polymorphism and Metamorphism: Malware can change its code or behavior to avoid
signature-based detection.

▪ Domain Generation Algorithms (DGAs): DGAs can generate a large number of potential
command and control server domains, making it difficult to block them all.

▪ Fast Flux: Fast Flux techniques use a rapidly changing network of compromised hosts to hide
the actual command and control server.

Exercise: For each evasion technique listed above, provide a real-world example of a malware that uses
it. Discuss how the technique works in the context of the malware and the challenges it presents for
detection.

Detecting Evasion Techniques

While evasion techniques can make malware detection more challenging, they are not foolproof. With
careful network traffic analysis and the right tools, it's possible to detect these techniques and identify
the malware using them.

142

Exercise: Research methods for detecting each of the evasion techniques listed in 17.2. Write a
summary of each method, including its effectiveness and any limitations.

Hands-On: Detecting Evasion Techniques in Network Traffic

To truly understand these evasion techniques and how to detect them, it's helpful to get hands-on
experience.

Exercise: Using a network traffic analysis tool like Wireshark, analyze pcap files containing malware
traffic that uses the evasion techniques discussed. Identify the evasion techniques and write a report
on your findings.

Task: Review your organization's network traffic for signs of evasion techniques. Document any
suspicious activity and develop a plan to investigate and respond to potential malware infections.

143

Network Forensics: Post-Malware Infection Analysis
Network forensics focuses on monitoring and analyzing network traffic, both to detect and to respond
to security incidents. In the context of post-malware infection analysis, it involves tracking the
malware's activities, understanding its impact, and developing a response plan.

Steps in Post-Malware Infection Analysis

Here are some key steps in post-malware infection analysis:

1. Data Collection: Capture and store network traffic for analysis. This could include packet data,
log files, and other relevant information.

2. Analysis: Examine the collected data to understand the malware's behavior, impact, and
possible origin.

3. Reporting: Document your findings and share them with relevant stakeholders. This report
could be used for incident response, legal proceedings, or developing future prevention
strategies.

Exercise: For each step listed above, provide a detailed explanation of the process and its importance.

Tools for Network Forensics

Several tools can aid in post-malware infection analysis. These include packet analyzers like Wireshark,
network forensics platforms like NetworkMiner, and log analysis tools.

Exercise: Choose a tool suitable for network forensics and familiarize yourself with its features and
usage. Write a brief report on your findings.

Hands-On: Performing Post-Malware Infection Analysis

The best way to understand post-malware infection analysis is to do it yourself.

Exercise: Using a network forensics tool, analyze a sample pcap file containing malware traffic. Identify
the malware's activities and write a brief report on your findings.

Task: Review your organization's process for post-malware infection analysis. Identify any gaps in your
current process and develop a plan to address them.

Proactive Defense Against Malware and APTs
Proactive defense involves anticipating and thwarting potential attacks before they happen. By
constantly analyzing network traffic, setting up intrusion detection systems, and maintaining up-to-
date threat intelligence, you can identify and mitigate threats before they cause damage.

Proactive Measures for Network Defense

Some of the proactive measures for network defense include:

1. Regular Network Monitoring and Analysis: Continuously monitor and analyze network traffic
to identify suspicious activities and trends.

2. Threat Intelligence: Maintain up-to-date threat intelligence to understand the latest malware
and APT strategies and tactics.

144

3. Intrusion Detection Systems (IDS): Set up IDS to automatically alert on suspicious activities.
4. Regular Patching and Updates: Regularly update and patch all systems to protect against

known vulnerabilities.
5. User Education: Train users on safe internet practices and how to identify potential threats.

Exercise: Research each of the proactive measures listed above. Write a brief report on how each
measure contributes to network defense.

Implementing Proactive Defense Measures

Implementing proactive defense measures requires a comprehensive approach that includes
technology, processes, and people. It involves deploying the right tools, establishing effective
processes for monitoring and response, and training people to recognize and handle potential threats.

Continual Improvement of Defense Measures

Cyber threats are continually evolving, and so must your defense measures. Regular review and
improvement of your defense strategy are crucial to staying ahead of the threat landscape.

Task: Review the cybersecurity measures in place in your network. Identify areas for improvement and
develop a plan to implement these improvements. Remember, proactive defense is all about staying
one step ahead of potential threats.

By now, you should have a comprehensive understanding of network traffic analysis for malware
analysis. With these skills and knowledge, you are well-equipped to protect your network against
malware and APTs. Remember, cybersecurity is a continual process, and staying informed about the
latest threats and defense strategies is key to maintaining a robust defense.

Role of Darknet Traffic Analysis in Malware Detection
Darknet, in the context of network traffic, refers to a range of IP addresses that are allocated but not
in use by any legitimate host on the internet. Since these addresses are not associated with any
legitimate services, any traffic to these addresses is considered suspicious.

Exercise: Research and summarize the concept of darknet traffic. Discuss why this type of traffic might
be indicative of malicious activity.

Darknet Traffic and Malware Detection

Malware often generates network traffic as part of its operation, such as communicating with a
command-and-control server or scanning for new targets. Some of this traffic may end up directed
towards darknet IP ranges. By monitoring darknet traffic, security researchers can detect malware
activity and gather information about new threats.

Exercise: Write a brief explanation of how monitoring darknet traffic can aid in malware detection.
Include real-world examples if possible.

Tools and Techniques for Darknet Traffic Analysis

Several tools and techniques can be used for darknet traffic analysis, such as network traffic analysis
tools like Wireshark, darknet monitoring systems, and honeypots.

145

Hands-On: Analyzing Darknet Traffic

To better understand the role of darknet traffic in malware detection, let's get some hands-on
experience.

Exercise: Using a dataset of darknet traffic (you can find datasets on sites like CAIDA), analyze the traffic
for signs of malicious activity. Write a report on your findings, including any indications of malware and
the techniques you used to identify them.

Task: Review your organization's approach to darknet traffic analysis. If you do not currently monitor
darknet traffic, develop a plan for incorporating this technique into your network security strategy.

Darknet traffic analysis is a powerful tool for detecting and studying malware. By monitoring this
suspicious traffic, you can detect malware activity and gather valuable information about emerging
threats.

146

Introduction to YARA
YARA is a powerful tool used in malware research and threat hunting for identifying and classifying
malware samples. With YARA you can create descriptions of malware families or behaviors based on
textual or binary patterns. These descriptions, named rules, are highly flexible and can be as simple or
complex as necessary.

Basic Syntax
A YARA rule is composed of a set of strings and a boolean expression. The rule is considered a match
if the boolean expression is true. Here's a basic example:

This rule will match any file that contains the string "malware".

Rule Identifier and Keyword
Each rule starts with the keyword rule followed by a unique identifier. Rule identifiers must follow the
same lexical conventions of programming languages, like C or Python: they can contain any
alphanumeric character and the underscore character "_", but they cannot start with a digit.

Strings section
The strings section of a YARA rule is where you specify the byte sequences, text strings, or regular
expressions you want to search for.

Condition section
The condition section of a rule specifies when the rule should be considered a match. This is where
the logic of the rule is defined.

rule ExampleRule
{
 strings:
 $my_text_string = "malware"
 condition:
 $my_text_string
}

strings:
 $hex_string = { E2 34 A1 C8 23 FB }
 $text_string = "malware"
 $regex_string = /malw[a-z]re/

condition:
 $hex_string or ($text_string and $regex_string)

147

Wildcards and Jumps
YARA supports the use of wildcards (?) and jumps (-) in hexadecimal strings:

Case-insensitive Strings
YARA also allows you to specify case-insensitive strings using the nocase keyword:

String Counting
You can also use YARA to count occurrences of a specific string:

Set Operators
Set operators allow you to perform logical operations on sets of strings:

strings:
 $hex_string_with_wildcard = { E2 34 ?? C8 23 FB }
 $hex_string_with_jump = { E2 34 [1-5] C8 23 FB }

rule example_rule
{
 strings:
 $string = "example" nocase

 condition:
 $string
}

condition:
 #text_string > 5

strings:
 $set1 = "string1"
 $set2 = "string2"
 $set3 = "string3"

condition:
 2 of ($set*)

148

Modules
YARA includes a set of modules that provide additional functionality, like examining the structure of PE
files, computing hashes, and others.

With these tools, YARA provides a powerful and flexible way to define custom rules for malware
detection and classification. From simple text or binary string matches to complex conditions based on
file structure or content, YARA allows malware researchers and threat hunters to build precise, efficient
rules for identifying and categorizing threats.

import "pe"

rule ExampleRule
{
 condition:
 pe.number_of_sections > 5
}

149

Use of Heuristics in Memory-based Malware Detection
Heuristics are rules or methods used to guide the search for solutions in complex problem spaces. In
the context of memory-based malware detection, heuristic methods involve using techniques and
patterns to identify potential malicious activities or anomalies that may suggest a system compromise.

Understanding Heuristic Techniques in Memory-based Malware Detection

Heuristic techniques in memory-based malware detection involve identifying patterns and behaviors
that are typically associated with malware. For instance, these may include:

▪ Unusual process behavior: Processes that are executing from suspicious locations, making
unexpected network connections, or exhibiting other unusual behaviors.

▪ Memory anomalies: Unexpected or anomalous memory usage, such as excessive memory
utilization or allocation, which might suggest a buffer overflow or other exploit.

▪ API calls: Certain API calls are commonly used by malware, such as those for creating remote
threads, reading/writing memory, or making network connections.

Popular Heuristics-Based Tools and Techniques

Various tools and techniques can be used to apply heuristics in memory-based malware detection.
Some popular choices include:

▪ Volatility Framework: This memory forensic tool can be used with various plugins to detect
suspicious processes, DLLs, network connections, etc.

▪ YARA: This is a tool aimed at helping malware researchers identify and classify malware
samples. YARA rules can be written to match on strings or binary data, making it highly flexible.

▪ AI and Machine Learning: More advanced heuristic techniques may employ AI or machine
learning to identify patterns that are indicative of malware.

Exercise: Getting Familiar with YARA

1. Download and install YARA.
2. Write a simple YARA rule to detect a known string in a file.
3. Test your YARA rule against a sample file.

Applying Heuristics with Volatility
Volatility can be used to apply heuristic techniques in memory-based malware detection. For instance,
you could use Volatility to:

▪ Identify processes running from unusual locations
▪ Detect processes with unexpected parent-child relationships
▪ Find hidden or unlinked processes
▪ Identify suspicious API calls

Exercise: Using Volatility to Apply Heuristics

1. Obtain a memory dump from an infected system (or use a known infected sample).
2. Use Volatility to identify any processes running from unusual locations or with unexpected

parent-child relationships.
3. Identify any hidden or unlinked processes.
4. Extract API call information for suspicious processes and investigate.

150

Advanced Heuristic Techniques
Advanced heuristic techniques may involve more sophisticated analysis, such as:

▪ Statistical analysis: For example, identifying unusual system behavior based on statistical
norms or baselines.

▪ AI or machine learning: These techniques can be used to classify behaviors or patterns based
on previously learned data.

Exercise: Exploring Advanced Heuristics

1. Using the Volatility output from Exercise, perform statistical analysis to identify any anomalous
behavior. For example, you might identify unusual process activity based on process count,
memory usage, etc.

2. Explore available AI or machine learning tools for malware detection. How might these be
applied to your analysis?

More Advanced Memory Artifact Analysis

Advanced memory artifact analysis may involve looking at unallocated memory, investigating memory
mapped files, looking at hardware and interrupt handlers, or using other advanced techniques.

Exercise: Investigating Unallocated Memory

1. Use Volatility's 'yarascan' plugin to scan the unallocated memory for any known malware
signatures.

2. Extract any interesting memory ranges and use a hex editor to further investigate.

151

Advanced Static Malware Analysis
Advanced static analysis techniques can also be used to identify obfuscated or hidden code within the
malware, as well as to detect and analyze any encryption or packing techniques used to disguise the
malware's behavior. Unlike dynamic malware analysis, which involves executing malware in a
controlled environment, static analysis focuses on the examination of the malware's static properties,
such as its file structure, code logic, API calls, and dependencies. This analysis technique helps security
researchers, analysts, and antivirus vendors understand the inner workings of malware and develop
effective countermeasures.

Understanding the PE (Portable Executable) Files
To help you understand better, let's make an analogy with a city's layout.

1. DOS Header
Think of the DOS Header as the old part of a city. Just like historical buildings that tell tales of
the city's past, the DOS Header tells the tale of the file's DOS compatibility. It's not typically
used in modern applications but still exists due to backward compatibility.

2. PE Signature

The PE Signature is like the city's emblem or crest, signifying the legitimacy of the PE file. It's a
quick way for the system (or city officials) to identify that the file (or city) is what it claims to
be.

3. COFF Header

The COFF Header could be compared to a city's census data. It contains crucial demographic
details about the file, like the architecture it's designed for (x86, x64), its physical size, the
timestamp when it was created, etc.

4. Optional Header

The Optional Header is similar to the city's infrastructure plan. It contains key pointers, such
as where the main function (city hall) is, where to load the file in memory (where to build the
city on land), the size of the entire image when loaded into memory (city's total planned area),
etc.

▪ Magic (2 bytes): The first 2 bytes represent the Magic field that determines if the
image is a PE32 or PE32+ image. 0x10b represents PE32, and 0x20b represents PE32+.

▪ Major Linker Version (1 byte) and Minor Linker Version (1 byte): The version of the

linker that was used to link the image.

▪ SizeOfCode (4 bytes): The total size of all code sections.

▪ SizeOfInitializedData (4 bytes): The total size of all initialized data sections.

▪ SizeOfUninitializedData (4 bytes): The total size of all uninitialized data sections.

▪ AddressOfEntryPoint (4 bytes): The address of the entry point relative to the image
base when the executable file is loaded into memory. It tells the computer where to
start executing the program.

▪ BaseOfCode (4 bytes): The address of the beginning of the code section, relative to

the image base.

152

▪ BaseOfData (4 bytes): The address of the beginning of the data section, relative to the
image base. This field is not present in PE32+ format.

5. Section Headers/Table

This is the city's map or directory. It gives a detailed layout of each section of the file, showing
where you can find the code (business district), data (residential areas), resource data
(recreational areas), etc.

6. Section Data

These are the actual districts or zones of the city. Each section plays a different role. The .text
section (business district) contains the executable instructions, the .data section (residential
area) holds global and static variables, and the .rsrc section (recreational area) contains
resources like icons, images, and menus.

An Example - PE File of Notepad
Let's say you're a city planner and your task is to understand the city layout of a well-known small town
called 'Notepad'. It's a simple town but has all the important city elements.

You start by checking the old part of the town (DOS Header) and find an old monument displaying a
message, "This program cannot be run in DOS mode".

Next, you verify the city's emblem (PE Signature) that reads "PE\0\0".

153

You then move onto the town's census data (COFF Header) and find out it was last rebuilt (modified)
on September 29, 2017 at 16:41:56.

You take a look at the city's infrastructure plan (Optional Header) and find that the city hall (main
function). The city is planned to be built on a 64-kilobyte plot (load into a 64KB memory space).

Next, you study the city's map (Section Headers/Table) and see different districts: .text (business
district), .data (residential area), .rsrc (recreational area), and others.

Finally, you explore each district (Section Data). The business district (.text) is bustling with activities
(executable instructions). The residential area (.data) is calm, with people (variables) living their lives.

154

The recreational area (.rsrc) is vibrant, filled with icons and menus (public resources) for the townsfolk
to enjoy.

By breaking down a complex topic into simpler, more relatable elements, we hope you now have a
better understanding of what a PE file is, how it is structured, and why each part is important.

A PE Import and Export

The Import Table

The Import Table is a list inside a PE file (a program) that keeps track of the shared functions it needs
to run. Let's think of the Import Table as a grocery list you make before going to the store. This list
ensures that you remember to get all the ingredients (functions) you need to cook your dinner (run
your program).

For example, let's consider a simple program that needs to print something on the screen and check
the current time. To do this, it might need two functions: printf (to print) and time (to check the time),
both of which are stored in a shared location. The program's Import Table will list these functions,
indicating that they are needed for the program to run properly.

The Export Table

On the other hand, the Export Table is a list inside a PE file that shows which functions it is offering to
other programs. It's akin to a store catalog displaying the items available for customers.

How Do Import and Export Tables Work Together?
When a program (with its Import Table) is run, the operating system checks the table to see which
functions are needed. It then looks at the Export Tables of other programs to find these functions. If it
finds a match, it creates a connection between the two programs, allowing the first program to use
the function it needs. It's like going to the store with your shopping list and picking up the items you
need from the shelves.

155

Why Are Import and Export Tables Important?
Import and Export Tables are essential for program interoperability and efficiency. They allow programs
to share common functions, reducing redundancy and saving memory. Without them, each program
would have to include its own versions of all the functions it needs, leading to a large, inefficient
system. It's the same reason why in a city, you wouldn't want every building to have its own power
station or water treatment plant.

Relocations in PE Files

If you've ever tried solving a jigsaw puzzle, you know that it involves placing pieces in certain positions
to create a complete picture. But what if these pieces could fit in more than one place and still form a
coherent image? This is quite similar to how relocations in Portable Executable (PE) files work, allowing
programs to function even when loaded into different places in a computer's memory. For malware
analysts, understanding relocations is like getting a crucial hint for solving a tricky puzzle.

Understanding Relocations
Relocations are sections within a PE file that provide the flexibility for the program to function
correctly, irrespective of where it's loaded into memory. In the context of malware, this ability can be
used to evade detection, making relocations a significant point of interest for analysts.

For example, imagine a sneaky piece of malware designed to load itself into a different location in
memory each time it's executed, making it harder to detect. This malware would rely on relocations
to adjust its code and function correctly, regardless of where it ends up in memory.

Analyzing the Relocation Table
A malware analyst can use various tools (like PE Explorer, PEview, or Ghidra) to open a PE file and
scrutinize its sections, including the '.reloc' section where the relocation table resides.

Decoding Relocation Entries
Each relocation entry within a block is a piece of the puzzle. It comprises two parts: the type and the
offset. The type signifies the kind of relocation, and the offset indicates the location within the memory
page that needs adjustment if the program is relocated.

156

Applying Knowledge of Relocations to Malware Analysis
The relocation table can provide valuable hints for analysts. For instance, an unusually large number
of relocations might suggest that the malware is trying to evade detection.

Another crucial point is that even if the malware uses packing to hide its original code, the relocation
entries often provide clues about the hidden code's structure and function, making the unpacking
process more manageable.

Resource in PE

Resource management in PE files, refers to the organization and handling of various embedded
resources within an executable file. In the context of malware analysis, resource management
becomes crucial for several reasons:

1. Identification of Malicious Artifacts: Malware often disguises itself by hiding malicious code
or data within resources. By analyzing the resources, malware analysts can identify suspicious
or anomalous content that may indicate the presence of malware. For example, an executable
file may contain a hidden resource that holds encrypted or obfuscated payload.

2. Analysis of Embedded Payloads: Some malware strains store their malicious payloads, such

as additional executable files or scripts, within resources. Resource management allows
analysts to extract and examine these payloads, helping in understanding the behavior,
capabilities, and intentions of the malware.

3. Detection of Anti-Analysis Techniques: Malware authors may employ various anti-analysis

techniques to evade detection or hinder analysis. These techniques can include encrypting or
compressing the malicious code within a resource. By analyzing the resource management
structure, analysts can identify such obfuscation techniques and develop countermeasures to
unpack or decrypt the hidden content.

4. Localization and Contextual Information: Malware often targets specific regions or languages.

Resource management plays a significant role in localization by allowing malware authors to
embed translated strings, region-specific information, or configuration data within resources.

157

Analyzing these resources helps in understanding the intended target and the context in which
the malware operates.

5. Visual and Behavioral Analysis: Malicious code may utilize resources for visual elements such

as fake dialog boxes, icons, or images to deceive users or to mimic legitimate applications. By
analyzing these resources, malware analysts can identify visual anomalies or inconsistencies,
which can aid in distinguishing malware from legitimate software.

6. Signature Creation and Detection: Resources can provide unique signatures or patterns that
help in the detection and classification of malware. By examining the resource management
structure and its contents, analysts can extract relevant information to create signatures or
detection rules for security tools, enhancing the ability to identify similar malware samples in
the future.

Windows Loader

When you run a program on your Windows computer, the system doesn't just magically know how to
execute the code; instead, it relies on a process called loading, specifically facilitated by the Windows
Loader. As a malware analyst, understanding this process is crucial.

Introduction to Windows Loader
Windows Loader is a component of the operating system responsible for loading and starting
programs. It's like the stage manager in a theater production: it doesn't perform any roles, but it
ensures that the actors (programs) get on the stage (into memory) and start performing at the right
time.

What Windows Loader Does
The Windows Loader performs a series of actions to execute a Portable Executable (PE) file:

1. Reading the PE File: The Windows Loader starts by reading the PE file from disk, beginning
with headers that contain metadata about the file.

2. Mapping the PE File into Memory: It then creates an area in memory where it maps the

executable file. It's like creating a workspace on a desk before starting a project.

3. Relocating Addresses: If necessary, the Loader will adjust addresses in the file to match where
it's loaded in memory.

4. Resolving Imports: Next, the Loader identifies and locates any additional files the program

needs to run (like DLLs). It's like gathering all the necessary tools before starting a DIY project.

5. Initializing: Finally, the Loader hands over control to the program, letting it initialize itself and
start running.

158

How Malware Misuses the Windows Loader
Now that we understand the basics, let's explore how malware can misuse the Windows Loader:

1. DLL Search Order Hijacking: In the "Resolving Imports" step, the Loader looks for DLLs in a
specific order, starting in the program's directory, then looking in system directories. Malware
can exploit this by placing a malicious DLL with the same name as a legitimate one in the
directory the Loader checks first.

2. DLL Injection: Some malware might inject malicious code into a running program by forcing it

to load a malicious DLL. This is like sneaking an extra actor on stage in the middle of a scene.

3. PE File Modification: Malware can modify the PE file's headers to trick the Loader into
executing malicious code.

Windows Loader and Malware Analysis
Understanding the Loader's processes can help a malware analyst detect and understand these kinds
of attacks. They can look for suspicious DLLs in unusual locations, unexpected modifications to PE files,
or signs of DLL injection.

Analysts can use tools like Process Monitor to see in real time which files are being loaded by a process
or PEview to inspect a PE file's headers manually.

PE File Analysis in Practice

When analyzing a PE file, the goal is to look for anything unusual or suspicious. For instance:

1. Unexpected or Misplaced Code: Finding code in a section where it typically doesn't belong
can be a red flag. For example, the .rsrc section usually contains resources like icons, so finding
executable code here is suspicious.

2. Anomalies in the Import Table: The Import Table lists the DLL files the program needs.

Malware often uses specific DLLs or functions that can be a giveaway. Also, a lack of imports
may suggest the file is packed or encrypted.

3. Packers and Cryptors: These tools can hide or obfuscate malware. PEiD can help identify them.

They're not always indicative of malicious intent (some legitimate software also uses them),
but they warrant a closer look.

4. Investigating the Entry Point: The entry point is where the program starts executing. By

disassembling the code at this point, you can follow the program's logic and look for any
suspicious activities.

159

Understanding Packers

A packer essentially performs two main tasks:

1. Transformation: The packer takes an input, typically executable code, and applies a specific
transformation to it. The purpose of this transformation is to obscure the code, making it more
challenging for both human analysts and automated tools to comprehend its functionality.

2. Generation of a new executable: The packer produces a new executable file that includes both

the transformed code and a routine to reverse the transformation during runtime. This
unpacking routine ensures that the original code is restored in memory and can be executed
normally.

To illustrate this concept, let's consider a basic example of a Python packer that utilizes base64
encoding as the transformation method:

This script takes an input Python script (input.py), encodes it using base64, and generates a new
Python script (output.py) that contains the base64-encoded script as a string along with a function to
decode and execute it.

Real-world packers employ more intricate transformation techniques for obfuscation and may include
additional features to detect and evade analysis tools.

import base64
import os

def pack(input_file, output_file):
 with open(input_file, 'rb') as f:
 data = f.read()

 # Transform the data (in this case, base64 encode it)
 transformed_data = base64.b64encode(data)

 # Create the unpacking routine and payload
 unpacking_routine = """
import base64

def unpack():
 data = b'{0}'
 return base64.b64decode(data)
 """.format(transformed_data)

 # Write the payload to the output file
 with open(output_file, 'w') as f:
 f.write(unpacking_routine)

if __name__ == '__main__':
 pack('input.py', 'output.py')

160

Binary

Digital Sizes
Digital size units are used to represent the amount of data or storage capacity in computers and digital
devices. The most basic unit is the bit, which can have a binary value of 0 or 1. Nibbles, bytes, kilobytes,
megabytes, gigabytes, and terabytes are progressively larger units used to represent larger amounts
of data. While the base-10 system is commonly used in the computer storage industry, the base-2
system is also used, especially in computer memory and programming contexts.

Unit Size (in bits)

Bit 1

Nibble 4

Byte 8

Kilobyte (KB) 8,192 bits or 1,024 bytes

Megabyte (MB) 8,388,608 bits or 1,048,576 bytes

Gigabyte (GB) 8,589,934,592 bits or 1,073,741,824 bytes

Terabyte (TB) 8,796,093,022,208 bits or 1,099,511,627,776 bytes

Bit: A bit is the smallest unit of digital information and represents a single binary digit, which can be
either 0 or 1.

Nibble: A nibble is a group of four bits, which can represent a single hexadecimal digit (0-9 and A-F).

Byte: A byte is a group of eight bits, which is the basic unit of digital storage in most computer systems.
A byte can represent a single ASCII character or a small number.

Kilobyte (KB): A kilobyte is equal to 1,024 bytes or 8,192 bits. It is commonly used to represent small
files, such as text documents or images with low resolution.

Megabyte (MB): A megabyte is equal to 1,048,576 bytes or 8,388,608 bits. It is commonly used to
represent larger files, such as music or high-resolution images.

Gigabyte (GB): A gigabyte is equal to 1,073,741,824 bytes or 8,589,934,592 bits. It is commonly used
to represent even larger files, such as videos or software applications.

Terabyte (TB): A terabyte is equal to 1,099,511,627,776 bytes or 8,796,093,022,208 bits. It is
commonly used to represent very large amounts of data, such as in data centers or cloud storage.

161

Understanding Binary Numbers
The world of technology and computers can often seem like a foreign language, especially when it
comes to binary numbers. But fear not! Understanding binary numbers isn't as daunting as it may
seem.

What are Binary Numbers?
Binary numbers are a way of representing numbers using only two digits: 0 and 1. This system, called
the binary numeral system, is the foundation of digital technology and computers. In contrast, the
decimal system we're more familiar with uses ten digits (0-9) to represent numbers.

The binary system is based on powers of 2, whereas the decimal system is based on powers of 10. For
example, in the decimal system, the number 234 can be broken down as follows:

(2 x 10^2) + (3 x 10^1) + (4 x 10^0) = 200 + 30 + 4 = 234

Similarly, a binary number like 1011 can be broken down using powers of 2:

(1 x 2^3) + (0 x 2^2) + (1 x 2^1) + (1 x 2^0) = 8 + 0 + 2 + 1 = 11

Converting Binary to Decimal
Let's dive into the process of converting a binary number to a decimal number with an example.
Suppose you have the binary number 11010. Here's a step-by-step guide on how to convert it to
decimal:

Write down the binary number and its corresponding power of 2 for each digit, starting from the right
(2^0) and moving to the left:

0 1 0 1 1 - - -

1 2 4 8 16 32 64 128

Multiply each binary digit by its corresponding power of 2:

(1 x 2^4) + (1 x 2^3) + (0 x 2^2) + (1 x 2^1) + (0 x 2^0)

Calculate the resulting decimal value:

16 + 8 + 0 + 2 + 0 = 26

So, the decimal equivalent of the binary number 11010 is 26.

Converting Decimal to Binary
Now let's go the other way and convert a decimal number to binary. Suppose we want to convert the
decimal number 45 to binary:

Find the highest power of 2 less than or equal to the number (in this case, 2^5 = 32).

Write down the digit 1 in the binary representation and subtract the value of the power of 2 from the
decimal number: 45 - 32 = 13.

Repeat steps 1 and 2 with the remaining value (13) and continue the process until the remaining value
is 0:

2^3 = 8 (less than or equal to 13): Write down 1, subtract 8 from 13: 13 - 8 = 5

162

2^2 = 4 (less than or equal to 5): Write down 1, subtract 4 from 5: 5 - 4 = 1
2^1 = 2 (greater than 1): Write down 0
2^0 = 1 (equal to 1): Write down 1,
subtract 1 from 1: 1 - 1 = 0

Now that the remaining value is 0, arrange the binary digits in the order they were found:
101101

So, the binary equivalent of the decimal number 45 is 101101.

Converting Decimal to Binary
Converting decimal numbers to binary and vice versa is an important skill in computer science and
digital electronics. Decimal numbers are the numbers we use in everyday life, while binary numbers
are used by computers to represent data and perform calculations.

To convert a decimal number to binary, we use the division and remainder method. Here are the steps:

1. Divide the decimal number by 2.
2. Write down the quotient and the remainder. The remainder will either be 0 or 1.
3. Continue dividing the quotient by 2 and writing down the quotient and remainder until the

quotient is 0.
4. The binary number is the sequence of remainders read from bottom to top.

For example, to convert the decimal number 23 to binary:

23 ÷ 2 = 11, with a remainder of 1
11 ÷ 2 = 5, with a remainder of 1
5 ÷ 2 = 2, with a remainder of 1
2 ÷ 2 = 1, with a remainder of 0
1 ÷ 2 = 0, with a remainder of 1

The binary number is 10111.

To convert a binary number to decimal, we use the positional value method. Here are the steps:

1. Write down the binary number.
2. Assign each digit a positional value, starting from 2^0 (1) on the right and increasing by a power

of 2 for each digit to the left.
3. Multiply each digit by its positional value.
4. Add up the products to get the decimal equivalent.

For example, to convert the binary number 10111 to decimal:

1 x 2^4 = 16
0 x 2^3 = 0
1 x 2^2 = 4
1 x 2^1 = 2
1 x 2^0 = 1

The decimal equivalent is 16 + 4 + 2 + 1 = 23.

163

Converting Text to Binary
Converting text to binary involves the process of encoding each character of the text into its binary
representation. The binary representation of a character is a sequence of 0s and 1s that represents the
character's ASCII code.

The ASCII code is a standard code used to represent characters in digital devices. Each character is
assigned a unique numerical value between 0 and 127, which can be represented in binary using 7
bits.

Decimal Hex Char Decimal Hex Char Decimal Hex Char Decimal Hex Char

0 0x00 NUL 32 0x20 SPACE 64 0x40 @ 96 0x60 `

1 0x01 SOH 33 0x21 ! 65 0x41 A 97 0x61 a

2 0x02 STX 34 0x22 " 66 0x42 B 98 0x62 b

3 0x03 ETX 35 0x23 # 67 0x43 C 99 0x63 c

4 0x04 EOT 36 0x24 $ 68 0x44 D 100 0x64 d

5 0x05 ENQ 37 0x25 % 69 0x45 E 101 0x65 e

6 0x06 ACK 38 0x26 & 70 0x46 F 102 0x66 f

7 0x07 BEL 39 0x27 ' 71 0x47 G 103 0x67 g

8 0x08 BS 40 0x28 (72 0x48 H 104 0x68 h

9 0x09 HT 41 0x29) 73 0x49 I 105 0x69 i

10 0x0A LF 42 0x2A * 74 0x4A J 106 0x6A j

11 0x0B VT 43 0x2B + 75 0x4B K 107 0x6B k

12 0x0C FF 44 0x2C , 76 0x4C L 108 0x6C l

13 0x0D CR 45 0x2D - 77 0x4D M 109 0x6D m

14 0x0E SO 46 0x2E . 78 0x4E N 110 0x6E n

15 0x0F SI 47 0x2F / 79 0x4F O 111 0x6F o

16 0x10 DLE 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 DC1 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 DC2 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 DC3 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 DC4 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15 NAK 53 0x35 5 85 0x55 U 117 0x75 u

22 0x16 SYN 54 0x36 6 86 0x56 V 118 0x76 v

23 0x17 ETB 55 0x37 7 87 0x57 W 119 0x77 w

24 0x18 CAN 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 EM 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1A SUB 58 0x3A : 90 0x5A Z 122 0x7A z

27 0x1B ESC 59 0x3B ; 91 0x5B [123 0x7B {

28 0x1C FS 60 0x3C < 92 0x5C \ 124 0x7C |

29 0x1D GS 61 0x3D = 93 0x5D] 125 0x7D }

30 0x1E RS 62 0x3E > 94 0x5E ^ 126 0x7E ~

31 0x1F US 63 0x3F ? 95 0x5F _ 127 0x7F DEL

To convert text to binary, follow these steps:

1. Choose the text that you want to convert to binary.

2. Convert each character in the text to its ASCII code using an ASCII table. For example, the letter
"A" has an ASCII code of 65.

164

3. Convert the decimal value of the ASCII code to binary. To do this, divide the decimal value by
2 repeatedly and note down the remainder each time until the quotient becomes 0. Then,
write down the remainders in reverse order to obtain the binary representation of the ASCII
code.

For example, the ASCII code for "A" (65) can be converted to binary as follows:

65 ÷ 2 = 32 (0)
32 ÷ 2 = 16 (0)
16 ÷ 2 = 8 (0)
8 ÷ 2 = 4 (0)
4 ÷ 2 = 2 (0)
2 ÷ 2 = 1 (0)
1 ÷ 2 = 0 (1)

Therefore, the binary representation of "A" is 01000001.

Repeat steps 2 and 3 for each character in the text to obtain the binary representation of the entire
text.

For example, if we want to convert the text "HELLO" to binary, we would first convert each character
to its ASCII code using an ASCII table:

H = 72
E = 69
L = 76
L = 76
O = 79

Then, we would convert each decimal value to binary using the method described above:

72 = 01001000
69 = 01000101
76 = 01001100
76 = 01001100
79 = 01001111

Therefore, the binary representation of "HELLO" is 01001000 01000101 01001100 01001100
01001111.

165

Practical Applications of Binary Conversion
Binary conversion has practical applications in various fields, especially in computer science and digital
electronics. Some of the practical applications of binary conversion are:

• Data storage and transmission: Computers use binary digits to represent data and store it in
memory. Binary conversion is used to convert data from its original form, such as text, images,
and audio, into a binary format that can be stored and transmitted.

• Digital circuits and logic design: Binary conversion is used to design and analyze digital circuits
and logic gates. Boolean algebra and logic gates operate on binary inputs and produce binary
outputs.

• Computer programming: Binary conversion is used in computer programming to represent
numbers and characters in binary format. For example, the ASCII code assigns each character
a unique binary code, allowing computers to represent and manipulate text.

• Encryption and security: Binary conversion is used in encryption algorithms to convert
plaintext into a binary format that can be encrypted and transmitted securely. Binary digits are
combined with cryptographic keys to create encrypted data.

• Networking: Binary conversion is used in networking protocols to represent IP addresses,
subnet masks, and other network parameters. These values are often represented in binary
format to facilitate routing and communication between different network devices.

166

Hex Conversion

Introduction to Hexadecimal Numbers
In the world of computer science and digital electronics, there are many different number systems
used to represent numerical values. One of these number systems is hexadecimal, which is widely used
in computer programming and digital electronics.

What are Hexadecimal Numbers?
Hexadecimal, or simply hex, is a base-16 number system that uses 16 unique symbols to represent
values. These symbols are the digits 0 to 9 and the letters A to F, where A represents the decimal value
of 10, B represents 11, and so on up to F, which represents the decimal value of 15. Hexadecimal
numbers are often written with a prefix of "0x" to distinguish them from decimal or other number
systems.

Properties of Hexadecimal Numbers
Hexadecimal numbers are used in computer programming and digital electronics for several reasons.
One of the main reasons is that they can represent large binary values more compactly. For example,
one byte of data in binary can be represented by two hexadecimal digits, and a 32-bit integer can be
represented by eight hexadecimal digits.

Another advantage of hexadecimal numbers is that they are easy to convert to and from binary. Each
hexadecimal digit corresponds to four bits of binary, so converting between hexadecimal and binary
involves grouping the bits into groups of four and converting each group to a corresponding
hexadecimal digit.

Uses of Hexadecimal Numbers
Hexadecimal numbers are used in various applications in computer programming and digital
electronics. Some of the common uses of hexadecimal numbers are:

• Memory addresses: In computer memory, each byte of data is assigned a unique hexadecimal
address. Hexadecimal addresses are used to locate data in memory and access it for
processing.

• Color codes: In digital graphics, colors are often represented in hexadecimal format using the
RGB (red, green, blue) color model. Each color channel is represented by two hexadecimal
digits, allowing for a wide range of colors to be represented.

• ASCII codes: In computer programming, ASCII codes are often represented in hexadecimal
format. ASCII codes assign each character a unique numerical value, which can be represented
in hexadecimal format for easy manipulation.

Conversion Methods
Converting between hexadecimal and other number systems is relatively easy, and many calculators
and software tools have built-in conversion functions. To convert a decimal number to hexadecimal,
you can use the division-remainder method. Divide the decimal number by 16 and write down the
remainder as a hexadecimal digit. Continue dividing the quotient by 16 until the quotient is 0, and then
write down the hexadecimal digits in reverse order.

To convert a binary number to hexadecimal, group the binary digits into groups of four and convert
each group to a corresponding hexadecimal digit. To convert a hexadecimal number to binary, convert
each hexadecimal digit to its binary equivalent and combine the resulting binary digits.

167

Converting Hex to Binary
Converting hex to binary involves the process of converting each hex digit to its corresponding 4-bit
binary representation. Hexadecimal (hex) is a base-16 number system that uses 16 symbols, 0-9 and
A-F, to represent numbers. Each hex digit represents four bits, and two hex digits represent one byte.

To convert hex to binary, follow these steps:

1. Choose the hex value that you want to convert to binary.

2. Write down the binary representation of each hex digit using the table below:

Hex Digit Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

3. Write down the binary representation of the hex value by concatenating the binary

representations of each hex digit. For example, the hex value "1F" would be converted to
binary as follows:

1 F
0001 1111

Therefore, the binary representation of "1F" is 00011111.

In summary, converting hex to binary involves writing down the binary representation of each hex digit
using the table above and concatenating the binary representations of each hex digit to obtain the
final binary representation of the hex value.

168

Converting Between Decimal, Binary, and Hexadecimal
Converting between decimal, binary, and hexadecimal is an important skill in computer science and
digital electronics. Here are the methods for converting between these number systems:

Decimal to Binary
To convert a decimal number to binary, we use the division and remainder method. Here are the steps:

1. Divide the decimal number by 2.
2. Write down the quotient and the remainder. The remainder will either be 0 or 1.
3. Continue dividing the quotient by 2 and writing down the quotient and remainder until the

quotient is 0.
4. The binary number is the sequence of remainders read from bottom to top.

For example, to convert the decimal number 23 to binary:

23 ÷ 2 = 11, with a remainder of 1
11 ÷ 2 = 5, with a remainder of 1
5 ÷ 2 = 2, with a remainder of 1
2 ÷ 2 = 1, with a remainder of 0
1 ÷ 2 = 0, with a remainder of 1

The binary number is 10111.

Binary to Decimal
To convert a binary number to decimal, we use the positional value method. Here are the steps:

1. Write down the binary number.
2. Assign each digit a positional value, starting from 2^0 (1) on the right and increasing by a power

of 2 for each digit to the left.
3. Multiply each digit by its positional value.
4. Add up the products to get the decimal equivalent.

For example, to convert the binary number 10111 to decimal:

1 x 2^4 = 16
0 x 2^3 = 0
1 x 2^2 = 4
1 x 2^1 = 2
1 x 2^0 = 1

The decimal equivalent is 16 + 4 + 2 + 1 = 23.

169

Decimal to Hexadecimal
To convert a decimal number to hexadecimal, we use the division-remainder method. Here are the
steps:

1. Divide the decimal number by 16.
2. Write down the remainder as a hexadecimal digit. If the remainder is greater than 9, use the

letters A-F to represent the values 10-15.
3. Continue dividing the quotient by 16 and writing down the remainders as hexadecimal digits

until the quotient is 0.
4. The hexadecimal number is the sequence of remainders read from bottom to top.

For example, to convert the decimal number 256 to hexadecimal:

256 ÷ 16 = 16, with a remainder of 0
16 ÷ 16 = 1, with a remainder of 0
1 ÷ 16 = 0, with a remainder of 1

The hexadecimal number is 100.

Hexadecimal to Decimal
To convert a hexadecimal number to decimal, we use the positional value method. Here are the steps:

1. Write down the hexadecimal number.
2. Assign each digit a positional value, starting from 16^0 (1) on the right and increasing by a

power of 16 for each digit to the left.
3. Multiply each digit by its positional value.
4. Add up the products to get the decimal equivalent.

For example, to convert the hexadecimal number 1A to decimal:

1 x 16^1 = 16
A x 16^0 = 10

The decimal equivalent is 16 + 10 = 26.

170

Real-world Use Cases of Hexadecimal Conversion
Hexadecimal conversion has various real-world use cases, especially in computer science and digital
electronics. Here are some examples of how hexadecimal conversion is used in practice:

• Web Development: In web development, hexadecimal conversion is used to specify colors for
website designs. Developers use hexadecimal color codes to represent colors in web pages,
and this helps to ensure that colors appear consistently across different devices and platforms.

• Network Addressing: In network addressing, hexadecimal conversion is used to represent IP
addresses and other network parameters. Each byte of the IP address is represented by two
hexadecimal digits, making it easier to work with and identify specific network addresses.

• Memory Addressing: In computer memory addressing, hexadecimal conversion is used to
represent memory addresses. Memory addresses are assigned unique hexadecimal values
that identify specific locations in the computer's memory.

• Character Representation: In computer programming, hexadecimal conversion is used to
represent characters in ASCII code. ASCII code assigns each character a unique numerical
value, which can be represented in hexadecimal format for easy manipulation.

• Digital Electronics: Hexadecimal conversion is widely used in digital electronics to represent
and manipulate data. Digital circuits and logic gates operate on binary inputs, and hexadecimal
is often used to represent the data in a more compact and easily recognizable format.

• File Formats: In file formats, hexadecimal conversion is used to represent binary data in a
human-readable format. Hexadecimal values are often used to represent binary data in file
formats such as JPEG, MP3, and PDF.

Hexadecimal conversion is an essential concept in computer science and digital electronics, with many
real-world use cases. It is used to represent colors in web development, IP addresses in networking,
memory addresses in computer systems, characters in programming, and data in digital electronics.
By understanding the applications of hexadecimal conversion, digital professionals can effectively
represent and manipulate data in various fields.

171

Disassembly and Decompilation

Assembly Language Fundamentals
Assembly language is a low-level programming language used to communicate with computer
hardware. It provides a more human-readable representation of machine code and serves as a bridge
between high-level programming languages and the underlying hardware.

Assembly Language Basics
Assembly languages vary depending on the computer architecture and instruction set. However, some
fundamental concepts are common across different assembly languages:

▪ Instructions: Assembly language instructions correspond to machine code operations, such as
moving data, performing arithmetic, or branching to different parts of the code.

▪ Registers: Registers are small, fast storage locations within the CPU used to hold data for
processing.

▪ Memory: Memory stores the program's data and instructions. Assembly language instructions
can load data from memory into registers, manipulate it, and store it back in memory.

▪ Addressing modes: Addressing modes determine how operands (data) are accessed in
memory or registers. Common addressing modes include immediate, direct, and indirect.

x86 Assembly Language
Assembly Language (ASM) is a low-level programming language used for direct interaction with the
computer hardware. In this chapter, we will focus on the x86 assembly language, which is designed for
the x86 class of processors.

1. General-Purpose Registers
There are eight general-purpose registers: EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI. While they are
called "general-purpose" because they can be used for a variety of things, they often have specific uses
in certain contexts:

a. EAX: Known as the accumulator register, it is used in a number of arithmetic operations and
as a function return value.

b. EBX: The base register often holds the address of a procedure or an array in memory.

c. ECX: The count register is typically used in loop operations as a counter.

d. EDX: The data register is used in various operations, including I/O and multiplication and

division.

e. EBP: The base pointer points to the base of the current stack frame, making it useful for
accessing local variables and parameters on the stack.

f. ESP: The stack pointer points to the top of the stack, an essential part of function calls,

push/pop operations, and handling interrupts.

g. ESI: Source index for string operations.

h. EDI: Destination index for string operations.

172

Examples
Let's look at some simple assembly instructions and their usage of registers:

a. MOV EAX, 1: This instruction moves the value 1 into the EAX register. This can often be seen
before a system call, as EAX is used to specify the system call number.

b. ADD ECX, EAX: This instruction adds the value in the EAX register to the ECX register, storing

the result in ECX.

c. PUSH EBX: This instruction pushes the value of the EBX register onto the stack. This is often
used to save a register's value for later use.

d. POP EDX: This instruction pops a value off the stack into the EDX register. This is typically used

to restore a value that was previously pushed onto the stack.

e. INC ECX: This instruction increases the value in the ECX register by one. ECX is often used as a
loop counter, and this instruction is commonly seen in loops.

f. CALL [EBP+8]: This instruction calls the function whose address is stored at the memory

location EBP+8. The EBP register is used to reference local variables and function parameters
on the stack.

2. Special Purpose Registers: Specific registers in the x86 architecture are designated for certain
functions:

▪ ECX, often called the count register, is typically used for loop counter scenarios.
▪ EIP (Extended Instruction Pointer) stores the memory address of the next instruction that

will be executed.
▪ EBP (Base Pointer) points to the base of the current stack frame.
▪ ESP (Stack Pointer) points to the top of the current stack frame.
▪ EFLAGS stores the current flags, including the Zero Flag (ZF), which holds the results of

operations.

3. Portable Executable (PE) Sections: A PE file comprises several sections, each performing distinct
roles:

▪ .data section: Stores pre-configured variables.
▪ .rsrc section: Contains the graphical elements of the binary.
▪ .text section: Contains the executable code.

4. Assembly Instructions: Assembly language incorporates a variety of instructions for performing
different tasks:

▪ MOV: Moves a value from one register to another (e.g., 'mov eax,0x04' puts 0x04 into eax,
while 'mov eax, ebx' moves the value in EBX into EAX).

▪ ADD: Adds two values together ('add eax, ecx' adds the value in ECX to EAX).
▪ SUB: Subtracts two values ('sub eax, edx' subtracts the value in EDX from EAX).
▪ MUL: Multiplies two values.
▪ DIV: Divides two values.
▪ CMP: Compares two values.
▪ INC: Increments the value in a register (e.g., 'inc eax' increments the value in EAX).

173

▪ DEC: Decrements the value in a register (e.g., 'dec eax' decrements the value in EAX).

5. Jump Instructions: Assembly language enables control flow to "jump" to different parts of the code
based on certain conditions:

▪ JZ: Jump if Zero (e.g., 'jz Loop' jumps to the label "Loop" if the zero flag is set).
▪ JNZ: Jump if Not Zero.
▪ JE: Jump if Equal.
▪ JNE: Jump if Not Equal.
▪ JL: Jump if Less than.
▪ JG: Jump if Greater than.

System Calls
System calls are the fundamental interface between user-level processes and the kernel. They allow
user-level programs to request services from the operating system kernel, such as file operations,
network communications, process management, and other low-level functionalities. When a program
needs to perform a privileged operation or access system resources, it invokes a system call, which
transfers control to the kernel.

Linux General System Calls

EAX Value Syscall Description

1 sys_exit Terminates the process

2 sys_fork Creates a new process

3 sys_read Reads from a file descriptor

4 sys_write Writes to a file descriptor

5 sys_open Opens a file

6 sys_close Closes a file descriptor

7 sys_waitpid Waits for a process to change state

8 sys_creat Creates a file

9 sys_link Creates a hard link

10 sys_unlink Deletes a name and possibly the file it refers to

11 sys_execve Executes a program

12 sys_chdir Changes the current working directory

13 sys_time Gets the current time

14 sys_mknod Creates a special or ordinary file

15 sys_chmod Changes permissions of a file

16 sys_lchown Changes owner and group of a file

174

Here's an example of a simple x86 assembly program that prints "Hello, World!" to the console. This
program uses the Linux system calls.

This program does the following:

1. Sets up a data section where we define our string "Hello, World!".

2. The _start: label is where the program execution begins. This is like the main function in C.

3. The mov instructions are used to set up the necessary arguments for the system call.
4. int 0x80 triggers a software interrupt, which transfers control to the kernel, where the system

call specified in the eax register is performed.

5. After printing the string, the program uses another system call to exit.

To compile and run this program, you can use the NASM assembler and the ld linker. Here are the
commands:

section .data
 hello db 'Hello, World!',0 ; null-terminated string to be printed

section .text
 global _start

_start:
 ; write system call
 mov eax, 4 ; syscall number (sys_write)
 mov ebx, 1 ; file descriptor (stdout)
 mov ecx, hello ; pointer to message to write
 mov edx, 13 ; message length
 int 0x80 ; call kernel

 ; exit system call
 mov eax, 1 ; syscall number (sys_exit)
 xor ebx, ebx ; exit code
 int 0x80 ; call kernel

nasm -f elf32 hello.asm
ld -m elf_i386 -o hello hello.o
./hello

175

Windows General System Calls (API)

System Call Description
CreateFile Creates a new file.

ReadFile Reads data from a file.

WriteFile Writes data to a file.

CreateProcess Creates a new process.

TerminateProcess Terminates a process.

GetSystemTime Gets the current system time.

GetLocalTime Gets the current local time.

GetSystemInfo Gets information about the system.

GetVersionEx Gets information about the version of Windows.

GetProcAddress Gets the address of a function in a DLL.

LoadLibrary Loads a DLL into memory.

FreeLibrary Frees a DLL from memory.

GetModuleHandle Gets the handle of a DLL.

ExitProcess Terminates the current process.

Here's an example of a simple x86 assembly program that prints "Hello, World!" to the console. This
program uses the Windows system calls.

This program does the following:

• .386: This directive specifies that the program is written for a 32-bit processor.

• .model flat, stdcall: This directive defines the memory model and calling convention for the
program. flat indicates that the program uses a flat memory model, where all memory
addresses are treated as a single linear address space. stdcall specifies the calling convention,
which determines how functions are called and how parameters are passed.

• include windows.inc: This line includes the windows.inc file, which is a header file containing
definitions and macros specific to the Windows operating system. It provides access to
Windows API functions and constants.

.386

.model flat, stdcall

include windows.inc

.data

szMessage db "Hello, World!", 0
dwWritten dd 0

.code

start:

invoke WriteConsoleA, GetStdHandle(STD_OUTPUT_HANDLE), addr szMessage, 13, addr dwWritten, NULL

invoke ExitProcess, 0

end start

176

• .data: This section is used to declare static data variables. In this case, it declares the variable
szMessage, which is a null-terminated string with the value "Hello, World!".

• szMessage db "Hello, World!", 0: This instruction defines a string constant named szMessage.

• .code: This directive marks the beginning of the code segment.

• start:: This label marks the beginning of the program's entry point.

• invoke WriteConsoleA, GetStdHandle(STD_OUTPUT_HANDLE), addr szMessage, 13, addr
dwWritten, NULL: This line invokes the WriteConsoleA function from the Windows API. The
invoke directive simplifies the syntax for calling functions.

▪ The first parameter, GetStdHandle(STD_OUTPUT_HANDLE), retrieves the standard output

handle, which represents the console window.

▪ The second parameter, addr szMessage, passes the address of the szMessage string to be
written to the console.

▪ The third parameter, 13, specifies the length of the string to be written.

▪ The fourth parameter, addr dwWritten, is the address of a variable that will receive the

number of characters actually written. It is declared elsewhere in the code.

▪ The last parameter, NULL, indicates that no attributes are specified for the output.

• invoke ExitProcess, 0: This instruction calls the ExitProcess function to terminate the program.

About Invoke
In assembly language, the invoke directive is a high-level macro that simplifies the process of calling
functions from external libraries or APIs. It is often used in conjunction with the stdcall calling
convention.

The invoke directive takes the following form:

Here, function_name is the name of the function to be called, and parameter1, parameter2, etc.,
represent the parameters to be passed to the function.

The invoke directive performs several tasks behind the scenes:

1. It pushes the function parameters onto the stack in reverse order.
2. It calls the function using the appropriate calling convention, such as stdcall. This involves

transferring control to the function and setting up the stack frame.
3. It cleans up the stack after the function call by adjusting the stack pointer.

The invoke directive is a convenient way to make function calls because it handles the details of stack
management and calling conventions automatically. It simplifies the code and makes it more readable.

invoke function_name, parameter1, parameter2, ...

177

Recognizing Common Malware Patterns in Assembly
To effectively analyze malware, it is essential to recognize common malware patterns in assembly
language.

Common Malware Patterns in Assembly
Some common malware patterns in assembly language include:

▪ Code obfuscation: Techniques used to make code more challenging to analyze or reverse-
engineer, such as using complex control flow structures, opaque predicates, or self-modifying
code.

▪ Cryptographic operations: Encryption and decryption routines, often used to hide the
malware's actual payload or communication with command-and-control servers.

▪ Process injection: Techniques used to inject malicious code into legitimate processes, making
it more difficult to detect the malware.

▪ Keylogging: Intercepting and recording keystrokes to steal sensitive information, such as
passwords or credit card numbers.

▪ Anti-analysis techniques: Techniques to detect and evade analysis tools or virtual
environments, such as debugger detection or virtual machine (VM) detection.

Hands-on Example

Exercise: Analyzing Code Obfuscation

1. Examine the following obfuscated x86 assembly code:

2. Analyze the code and determine its purpose. It's a program that simply moves the value 1 to
the eax register (which is the syscall number for exit in Linux), and then calls the int 0x80
instruction to invoke the system call, thereby exiting the program.

3. The mov, sub, and add instructions are all essentially redundant and are there to obfuscate
the code. A non-obfuscated version of the program would just be:

section .text
global _start

_start:
 mov eax, 2 ; eax now contains 2
 sub eax, 1 ; subtract 1 from eax. eax now contains 1
 xor ecx, ecx ; clear ecx
 add eax, ecx ; add ecx (which is 0) to eax. eax still contains 1
 int 0x80 ; syscall

section .text
global _start

_start:
 mov eax, 1
 int 0x80

178

Hands-on Example

Exercise: Identifying Cryptographic Operations

1. Examine the following x86 assembly code:

2. Analyze the code and determine its purpose. Identify the XOR operation and its use for basic
encryption.

In this code, the encrypt loop is where the XOR encryption takes place. It loads the address of the
string into the esi register, then XORs each byte of the string with the key (0xAA). The inc instruction is
used to advance to the next byte, and the loop instruction decrements ecx and jumps back to the
encrypt label until ecx is zero. This results in every byte in the string being XORed with the key,
effectively encrypting the string.

section .data
 key db 0xAA
 string db "Hello, World!", 0
 length equ $-string

section .text
 global _start

_start:
 ; XOR encryption
 mov ecx, length
 lea esi, [string]

encrypt:
 xor byte [esi], key
 inc esi
 loop encrypt

 ; Exit the program
 mov eax, 1
 int 0x80

179

Hands-on Exercise

Exercise: Detecting Process Injection

1. Examine the following x86 assembly code:

2. Analyze the code and determine its purpose.

This code does the following:

1. Retrieves the address of the LoadLibraryA function.
2. Opens the target process with all possible access rights (PROCESS_ALL_ACCESS).
3. Allocates memory within the address space of the target process using VirtualAllocEx.

section .data
 DLLPath db 'C:\path\to\dll.dll', 0 ; Path to DLL file
 LoadLibrary db 'LoadLibraryA', 0 ; LoadLibrary function name

section .text
 global _start

_start:
 ; Get handle to kernel32.dll
 mov eax, 0x12345678 ; Placeholder for LoadLibrary address
 mov ebx, [eax]

 ; Get address of LoadLibrary function
 lea eax, [LoadLibrary]
 push eax
 mov eax, 0x87654321 ; Placeholder for GetProcAddress address
 call eax

 ; Get handle to target process
 mov eax, 0x1234 ; Placeholder for OpenProcess address
 push 0x1F0FFF ; PROCESS_ALL_ACCESS
 push 0 ; FALSE (bInheritHandle)
 push 0x5678 ; Placeholder for target process ID
 call eax

 ; Allocate memory in target process
 mov ebx, eax ; Save handle to target process
 mov eax, 0x23456789 ; Placeholder for VirtualAllocEx address
 push 0x1000 ; MEM_COMMIT
 push 0x40 ; PAGE_EXECUTE_READWRITE
 push 1000 ; Size of memory to allocate
 push 0 ; NULL (lpAddress)
 push ebx ; Handle to target process
 call eax

 ; Load DLL into target process
 push ecx ; Address of DLL path in target process
 push ebx ; Handle to target process
 mov eax, 0x45678901 ; Placeholder for CreateRemoteThread address
 call eax

 ; Exit the program
 mov eax, 1
 int 0x80

180

4. Writes the path of the DLL to be injected into the allocated memory using
WriteProcessMemory.

5. Loads the DLL into the target process's address space using CreateRemoteThread, which starts
a new thread that calls LoadLibraryA with the DLL path as its argument.

6. Exits the program.

181

IDA

Introduction to IDA
The Interactive Disassembler (IDA) is a powerful, industry-standard disassembler that is widely used
by professionals, particularly those in cybersecurity and reverse engineering. It is a tool that allows you
to examine the inner workings of software by disassembling its code to a more human-readable form.
IDA provides numerous features and capabilities, from control flow graphing to detailed annotations,
making it the de facto choice for static analysis.

IDA Basics
Before we dive into IDA, it's essential to understand the process of disassembly. In its simplest form,
disassembly is the process of transforming machine language, which is a binary format that a
computer's hardware understands, back into assembly language, a more human-readable form.
Assembly language, while challenging to understand for the uninitiated, is essentially a low-level
programming language that provides a stronger understanding of the computer's inner workings.

The Need for a Disassembler
IDA's function as a disassembler is crucial for several reasons. First, it's a key tool in reverse
engineering, a process where engineers break down a piece of software to understand its operations,
often without having access to the source code. This allows them to discover bugs, vulnerabilities, or
malicious code in the software. Furthermore, it is frequently used for patch diffing, malware analysis,
vulnerability discovery, and even the more benign exploration of legacy code when original source
code is unavailable.

IDA Features

Interactive, Programmable, Extendable
One of IDA's distinguishing features is its interactivity. While some disassemblers offer a static output,
IDA allows the user to explore the code, change annotations, and even rewrite assembly instructions.
This dynamic approach significantly improves the reverse engineering process, providing a more
detailed understanding of the program's flow and operations.

IDA is also programmable, allowing for the automation of tasks through its own scripting language,
IDC, and also supports Python. This greatly enhances the user's capabilities, making it possible to
create scripts that can analyze particular patterns in the code or automate routine tasks.

182

Lastly, IDA is extendable. It provides an SDK (Software Development Kit), enabling the development of
plugins that can extend its functionalities. Many plugins have been created by the user community and
are available for tasks ranging from enhanced code visualization to integration with other analysis
tools.

Multi-Platform
IDA supports an impressive range of platforms. As of the last update at the time of writing, IDA can
handle more than 60 families of processors, including x86, ARM, PowerPC, MIPS, and more. It can also
disassemble code for many operating systems, including Windows, Linux, macOS, iOS, and Android.
This wide range of support is one of the reasons why IDA is so valuable, as it can analyze virtually any
piece of software.

Graphing
IDA provides graphical representations of disassembled code, showing control flow graphs that help
the user understand the structure of the code and the relationships between different blocks of code.
This is particularly helpful in understanding loops, conditional branches, and function calls.

Understanding the IDA Interface
IDA's interface is divided into multiple windows, each providing a unique perspective on the
disassembled code.

The Disassembly window displays the disassembled code itself.

183

The Graph window presents the control flow graph for the current function.

The Functions window shows a list of all functions detected in the code, and the Imports and Exports
windows display the imported and exported functions, respectively.

The Hex View window allows you to see the raw hex bytes of the code.

184

The Structures window is where you can define and view data structures, and the Enums window is
for defining and viewing enumerations.

Finally, the Output window is where IDA displays various informational and error messages.

185

Malware Analysis using IDA
Before diving into analysis, it's important to prepare a secure environment. Analyzing malware carries
inherent risks as we're dealing with potentially harmful code. To mitigate these risks, perform analysis
in an isolated virtual environment, like a Virtual Machine (VM), disconnected from networks and
sensitive data.

Ensure that you have obtained a malware sample for this exercise. Sites like VirusShare, or TheZoo on
GitHub, offer malware samples for educational purposes.

Basic Analysis
Let's start with a simple analysis of our sample malware, a file named sample.exe. Open it in IDA. Your
primary point of interest will be the "Disassembly" window, where you'll see the assembly code.

Exercise: Understanding the Entry Point
One of the first things to identify in malware analysis is the entry point, the first code executed when
the program starts.

1. In the "Functions Window," look for a function named start or something similar. This function
typically calls the main function where the principal routine of the code begins.

2. Analyze the instructions in the start function and find the main function call.

186

3. Investigate the main function. You'll see the assembly code that the malware executes at
startup.

Dynamic Libraries and API Calls
Many malware samples utilize dynamic libraries (DLLs) to carry out their operations. These libraries
provide an interface for accessing system functionalities. Monitoring these calls can provide clues
about the malware's behavior.

Exercise: Analyzing API Calls

1. Open the "Imports" window. Here, you'll see a list of DLLs and the API functions the malware
uses.

2. Identify commonly used malicious APIs, like WriteFile, CreateProcess, CreateRemoteThread,

RegSetValue, etc.

3. Click on each API function and see where it's called in the code. Analyze the surrounding code
to understand its usage.

187

Strings and Hidden Information
Strings within the malware can provide valuable clues. They can reveal file paths, URLs, registry keys,
and more.

Exercise: Extracting Strings

1. In IDA, click on the "View" menu and select "Open subviews" -> "Strings".

2. Browse through the list of strings and look for any suspicious or revealing information.

188

3. Double-click on any interesting string to see where it's used in the code.

Advanced Malware Techniques
Advanced malware often uses techniques to obfuscate its code, like packing or encrypting. A packer
can be identified by a small number of imports and a large amount of code in the start or main function
that subsequently unpacks the actual malware.

When I’ve opened the packed file, I get this Warning message:

The "Truncated section at file offset" warning in IDA Pro refers to an inconsistency between the size or
the location of a section of the Portable Executable (PE) file as it's defined in the file's headers, and the
actual size or location when IDA attempts to load it. When a PE file is created, the headers include
information about the size and location (offset) of each section within the file. When IDA loads the file,
it uses this information to map each section into its workspace.

This discrepancy can occur due to various reasons:

1. Corruption or Damage: The PE file could be corrupted or damaged in some way that has
affected the section in question.

2. Packing or Obfuscation: The file might be packed or obfuscated in a way that purposely creates
these inconsistencies to hinder analysis.

3. Malformation: The PE file could be malformed, either unintentionally (due to a bug in the
software that created it) or deliberately (to evade detection or analysis).

189

Exercise: Identifying Packers
1. Inspect the "Imports" window. If you see a limited number of imports, it might be a sign of a

packer.

2. Look for calls to APIs such as VirtualAlloc or VirtualProtect in the start or main function. These
could be used for unpacking code into memory.

3. If you identify a packer, the next step could involve dynamic analysis with a debugger to
understand the unpacked code.

About VirtualAlloc and VirtualProtect

VirtualAlloc and VirtualProtect are two functions provided by the Windows API, often used in memory
management. These functions can be crucial for malware analysis as they can reveal how a malicious
program allocates and protects memory, potentially indicating its behavior. Let's take a closer look at
each.

VirtualAlloc
The VirtualAlloc function is used to reserve, commit, or both, a region of pages within the virtual
address space of a process. An application can use this function to allocate memory for its own use.

190

▪ lpAddress: The starting address of the region to allocate.
▪ dwSize: The size of the region, in bytes.
▪ flAllocationType: The type of allocation.
▪ flProtect: The memory protection for the region of pages to be allocated.

Malware may use VirtualAlloc to allocate space for unpacking obfuscated code or storing data it
doesn't want to be written to disk. By monitoring calls to VirtualAlloc, malware analysts can identify
such behavior.

VirtualProtect
The VirtualProtect function changes the protection on a region of committed pages within the virtual
address space of a process.

▪ lpAddress: A pointer to the base address of the region of pages whose access protection
attributes are to be changed.

▪ dwSize: The size of the region whose access protection attributes are to be changed, in bytes.
▪ flNewProtect: The new access protection.
▪ lpflOldProtect: A pointer to a variable that receives the previous access protection of the first

page in the specified region of pages.

Malware often uses VirtualProtect to change memory permissions, for instance, marking a region of
memory as executable just before it transfers execution to that region (a common characteristic of
unpacking routines or shellcode execution). By observing calls to VirtualProtect, malware analysts can
identify such behavior and potentially determine the regions of memory that contain unpacked
malicious code or the start of a shellcode routine.

Both functions are powerful tools for controlling memory within a process, but they can also be
leveraged by malware for malicious purposes. Understanding how they work can help analysts better
understand and counter threats.

LPVOID VirtualAlloc(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flAllocationType,
 DWORD flProtect
);

BOOL VirtualProtect(
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flNewProtect,
 PDWORD lpflOldProtect
);

191

Setting up the IDA

Setting Up Preferences
IDA offers a wide range of preferences that you can configure based on your needs.

When you start IDA and open a file, you will see several options:

1. Create Flat Group: This option is used when you want IDA to treat the file as a flat binary file
with no specific format. It's useful when you're working with raw binary files or firmware
dumps that don't have any specific format.

2. Load Resources: When this option is enabled, IDA will load resources from the executable.

This includes icons, menus, dialog boxes, string tables, etc. For most analysis, especially for
Windows executables, it's advisable to leave this option enabled.

3. Manual Load: This option should be used when you want to manually control how the file is

loaded into IDA. This might be necessary if the file is packed or encrypted in some way that
prevents it from being loaded normally.

4. Rename DLL Entries: This option, when enabled, allows IDA to rename import entries with

their corresponding names from the imported DLLs. This is especially helpful when you are
dealing with a program that uses a lot of imported functions, as it can make the disassembled
code much easier to understand.

5. Create Imports Segment: This option instructs IDA to create a separate segment for the

imported functions. This can be very useful for understanding what external functions the
program uses, and how it uses them.

192

IDA generates several auxiliary files when you load an executable for analysis. These files are used to
store various information about the disassembled program and your analysis progress.

1. .idb or .i64 files: These are the primary database files for IDA. They store all of the information
about the disassembled binary, including the original binary data, the disassembled code, any
comments or labels you've added, etc. The .idb extension is used for 32-bit binaries and .i64
for 64-bit binaries.

2. .nam files: These files are used to store information about named addresses in the

disassembled binary. Essentially, it's a map between names and addresses, which allows IDA
to quickly look up addresses by name.

3. .til files: These files store type library information. This includes definitions for data types and

function prototypes. IDA uses this information to better understand the disassembled code
and provide more accurate analysis.

Exercise: Setting Up Preferences

1. Open IDA and navigate to 'Options' -> 'General'.

2. Enable line prefixes: This can be helpful for quickly identifying the memory address of a
particular line of code.

193

Installing Plugins
IDA's functionality can be extended through the use of plugins.

Exercise: Installing a Plugin

1. Download a plugin of your choice. For this exercise, we'll use the 'hexcopy-ida' plugin that can
help in copying hex code.

2. Copy the downloaded FindCrypt.py file into the 'plugins' directory in the IDA folder.

3. Restart IDA, and now should see 'Copy Hex' once you right-click the code.

194

Configuring IDA for Python Scripting
IDA includes a built-in Python interpreter, allowing you to automate tasks or extend IDA's functionality
using Python scripts.

Exercise: Setting Up Python in IDA

1. Verify that Python 2.7 is installed on your system. If not, download and install it from the
official Python website.

2. Restart IDA. Now you can write and run Python scripts within the IDA environment.

195

Features of IDA

Loading a Binary
The first step to using IDA is loading the binary file you wish to analyze.

Exercise: Loading a Binary

1. Open IDA.
2. Click on 'File' -> 'Open'. Navigate to the binary file you wish to analyze and open it.
3. You will be presented with a 'Load a new file' dialog box. Ensure the 'Manual load' box is

unchecked and click 'OK'.

4. IDA will now disassemble the file. This process may take some time depending on the size and
complexity of the file.

Navigating the IDA Interface
IDA's interface consists of multiple windows, each providing unique insights into the disassembled
code.

Exercise: Navigating the IDA Interface

1. Familiarize yourself with the various windows, like 'Disassembly', 'Functions', 'Imports',
'Exports', 'Strings', etc.

2. Click on any function in the 'Functions' window to navigate to it in the 'Disassembly' window.

3. Similarly, click on any import in the 'Imports' window to navigate to its references in the code.

196

Analyzing Code Flow
IDA provides control flow graphs for visualizing the flow of code.

Exercise: Using Code Flow Graphs

1. Open any function in the 'Disassembly' window.
2. Right-click and select 'Graph mode' or press 'Space' to view the control flow graph of the

function.

3. Analyze the flow of code and observe how it branches based on conditional statements.

Using IDA's Search Capabilities
IDA provides powerful search capabilities that let you search for text, immediate values, sequences of
commands, etc.

Exercise: Using IDA's Search
To search for text, navigate to 'Search' -> 'Text'. Type the text you wish to find and click 'OK'.

197

Code Annotations
IDA allows you to annotate disassembled code, providing context, notes, or labels that can enhance
your understanding.

Exercise: Annotating Code

1. In the disassembly window, click on the line of code you wish to annotate.

2. Press ':' (colon) and enter your annotation in the dialog box that opens, then click 'OK'.

3. Your comment will now appear next to the line of code. This is useful for leaving notes about

what a particular function or block of code does.

198

Using the HexRays Decompiler
The HexRays Decompiler is a separate product that integrates with IDA to provide C-like pseudocode
from the disassembled code, making it easier to understand.

Exercise: Using the Decompiler

1. Open a function in the disassembly window.
2. Navigate to 'View' -> 'Open subviews' -> 'Pseudocode' or press 'F5' to view the decompiled

code.

While decompiled code is easier to read, it might not always be accurate, and it's important to refer
back to the assembly when necessary.

199

Keyboard Shortcuts in IDA

1. Navigation

▪ Space: Toggle between graph view and text view.
▪ Esc: Go back to the previous location.
▪ Ctrl + Enter: Go forward to the next location.
▪ N: Rename a function, variable, or label.
▪ ;: Add a comment.

2. Searching

▪ Alt + T: Text search.
▪ Alt + B: Binary search.
▪ Alt + F: Find next occurrence of the last search.

3. Functions

▪ P: Create a function at the current location.
▪ U: Undefine a function at the current location.

4. Cross-references

▪ X: Show cross-references to the item under the cursor (such as a function or variable).
▪ Ctrl + X: Show cross-references from the item under the cursor.

5. Debugging

▪ F2: Set or clear a breakpoint.
▪ F7: Step into a function.
▪ F8: Step over a function.

6. String analysis: Shift + F12 to list all strings in the binary. This can often provide useful insights
into the malware's functionality.

7. Imports/Exports: Ctrl + E to list all exported functions, Ctrl + I to list all imported functions.

These can give clues about the malware's capabilities.

8. Graphing: Use the Function Call Graph (View -> Graphs -> Function call graph) to get a high-
level overview of the program's control flow.

9. Hex View: Shift + H to open the Hex View. This can be useful for examining raw binary data.

200

Debugging with IDA

Setting up the Debugger
IDA supports several different debuggers, including the local Windows debugger, WinDbg debugger,
remote GDB debugger, Bochs debugger, remote iOS debugger, and Android debugger. The choice of
debugger will depend on your specific situation.

Let's start with the local Windows debugger, which is suitable for most Windows-based malware.

1. Load the executable file you want to debug into IDA.
2. Go to the Debugger menu and select Select Debugger.

3. In the list of debuggers, select Local Windows debugger. This will set IDA to use the Windows

debugger for the current session.

Basic Debugging Controls
Here are the most commonly used controls in IDA Debugger:

▪ F2: Set or clear a breakpoint at the current line.
▪ F9: Start or continue execution until the next breakpoint.
▪ F7: Step into a function, i.e., follow the function call and pause execution at the first instruction

inside the function.
▪ F8: Step over a function, i.e., run the entire function and pause execution at the next

instruction after the function call.

These controls allow you to navigate through the code and control the execution flow.

Running the Program
Let's run the program to see what it does. Click on the Debugger menu and select Start Process. If the
program requires command-line arguments, you can provide them in the dialog box that appears.

201

Once the program starts, IDA will switch to the disassembly view, showing the current instruction
highlighted. You can now use the step-into and step-over commands to navigate through the code.

Setting Breakpoints
Breakpoints are a useful tool for controlling the execution flow. For example, if you're interested in a
particular function, you can set a breakpoint at the function's entry point, and the program will pause
execution when it reaches that point.

Let's say we have a function named malicious_activity and we want to examine its behavior. Here's
how you set a breakpoint:

4. In the Functions window, click on the malicious_activity function. This will take you to the start
of the function in the disassembly view.

5. Press F2. A red highlight appears on the current line, indicating that a breakpoint has been set.
6. Now, when you run the program, it will pause execution as soon as it reaches the

malicious_activity function.

Inspecting Program State
When the program execution is paused, you can inspect the program's state. This includes the contents
of memory, the values of CPU registers, the call stack, and more.

Here are some useful views:

• Registers window: This shows the current values of the CPU registers. This can help you
understand what the program is currently doing.

• Stack view: This shows the current state of the stack. This is particularly useful for
understanding function calls and local variables.

• Memory view: This allows you to examine the contents of memory. This is useful for
investigating data structures, buffers, etc.

202

Identifying Windows Malware Characteristics

Identifying Malware Behavior
Malware usually exhibits certain behaviors that allow them to accomplish their malicious intent.

Exercise: Identifying Malicious Behavior

1. Open a malware sample in IDA.
2. Start by examining the Imports window, as malware often makes use of system APIs to perform

malicious activities.
3. Look for suspicious API calls like CreateRemoteThread, WriteProcessMemory, RegSetValueEx,

or ShellExecute.
4. Investigate the API calls and the surrounding code to get a sense of what the malware might

be trying to accomplish.

Persistence Mechanisms
Most malware will try to ensure it remains on the system even after a reboot, a trait known as
persistence.

Exercise: Identifying Persistence Mechanisms

1. In the same malware sample, look for API calls that could be used to achieve persistence.
2. Calls like RegSetValueEx, CopyFile, CreateService, or WriteFile can often be associated with

persistence mechanisms.

3. Identify how these APIs are being used. Is the malware writing to the registry to auto-start? Is

it installing itself as a service?

Network Communications
Many types of malware will communicate over the network, either to exfiltrate data, receive
commands, or download additional components.

Exercise: Identifying Network Communications

1. Look for API calls associated with network communication, such as socket, connect, send, recv,
InternetOpen, InternetReadFile, etc.

203

2. Try to identify what data the malware might be sending and where it might be sending it. The
addresses it connects to could be hardcoded in the binary, or they might be obfuscated or
encrypted.

Evasion Techniques
Malware often uses evasion techniques to avoid detection by security software or analysts.

Exercise: Identifying Evasion Techniques

1. Look for API calls that could be used for process manipulation, such as CreateProcess,
WriteProcessMemory, or CreateRemoteThread. These could be used for process injection, a
common evasion technique.

2. Look for calls like IsDebuggerPresent or CheckRemoteDebuggerPresent. These could be used

as anti-debugging techniques to make analysis more difficult.

204

The Stack in IDA

In computer science, a stack is a data structure that serves as a collection of elements with two main
operations: push and pop. Elements are always added (pushed) and removed (popped) from the top
of the stack. This principle is often referred to as LIFO (Last In First Out).

In the context of IDA Pro and malware analysis, understanding the stack is fundamental. The system
stack is heavily used by programs for various tasks like storing local variables, passing parameters to
functions, and managing return addresses for function calls.

The Stack in Assembly
In assembly language, the stack is a region in memory that's managed in a LIFO manner. Two primary
assembly instructions interact with the stack:

▪ push: Places a value onto the top of the stack.
▪ pop: Removes a value from the top of the stack.

The esp register (Stack Pointer) points to the top of the stack. Each time we push a value, it decreases
(since the stack grows "downwards" in memory), and each time we pop a value, it increases.

The ebp register (Base Pointer) is also crucial. It typically points to a fixed location within the stack
frame and is used as a reference point to access local variables and function parameters.

The Stack Frame
Each time a function is called, a new "stack frame" is created for that function's use. The stack frame
contains:

▪ Function parameters: These are values passed into the function by the caller.
▪ Return address: The address in the code to jump back to when the function completes.
▪ Saved base pointer: The previous function's ebp value.
▪ Local variables: Variables declared within the function.

Here's a typical example of what happens when a function is called:

1. The caller pushes the function parameters onto the stack.
2. The caller pushes the return address onto the stack (this is done automatically by the call

instruction).
3. The callee (the function being called) pushes the old ebp onto the stack. This allows it to

restore the ebp when the function is done.
4. The callee moves the esp into ebp to create a new base for the stack frame.
5. The callee decreases esp to make space for local variables.

This might seem overwhelming, but with practice, you'll get the hang of it.

205

Advanced Reverse Engineering
Advanced reverse engineering refers to the process of analyzing and understanding the inner workings
of a technology, system, or software by examining its design, structure, and behavior. Reverse
engineering involves deconstructing and examining an existing product or system to extract valuable
information, such as its algorithms, protocols, or underlying principles.

While traditional reverse engineering focuses on understanding the functionality of a product or
system, advanced reverse engineering takes it a step further by delving into more complex and
intricate aspects. It typically involves applying sophisticated techniques and tools to gain a deeper
understanding of the target technology.

Here are some key aspects of advanced reverse engineering:

1. Binary Analysis: Advanced reverse engineering often involves analyzing the binary code of
software or firmware. This entails examining the low-level instructions and data structures to
uncover the logic and functionality of the program.

2. Code Deobfuscation: Many software applications employ obfuscation techniques to make the

code more difficult to understand or reverse engineer. Advanced reverse engineering
techniques involve deobfuscating the code to reveal its original structure and logic.

3. Vulnerability Research: Advanced reverse engineering plays a crucial role in vulnerability

research and discovering security flaws in software or systems. By examining the code,
analyzing the software's behavior, or fuzzing techniques, researchers can identify potential
vulnerabilities that can be exploited.

4. Protocol Analysis: Reverse engineering is often used to understand proprietary or

undocumented protocols. By capturing network traffic or analyzing communication between
different components, researchers can decipher the protocols used and gain insight into how
the system operates.

5. Hardware Reverse Engineering: Advanced reverse engineering is not limited to software; it

can also involve analyzing the hardware components of a system. This includes understanding
the integrated circuits, circuitry, and electronic components to reverse engineer the
functionality or design of a device.

6. Code Reconstruction: Advanced reverse engineering can go beyond merely understanding the

code and involve reconstructing the original source code or high-level design of a system. This
process aims to create a more abstract representation of the software or system, facilitating
further analysis or modification.

206

Code Flow and Control Structures
Understanding code flow and control structures is crucial in the field of advanced reverse engineering.
Gaining insights into these aspects allows you to effectively analyze and deobfuscate complex code,
discover hidden functionality, and identify malicious behavior.

Control Structures in Assembly
When reverse engineering, you will often work with assembly code, as it is the lowest level of human-
readable code. Understanding the basic control structures in assembly, such as jumps, loops, and
conditional branches, is essential for analyzing code flow.

Jumps
Jumps are used to transfer control from one part of the code to another. In assembly, jumps can be
unconditional (JMP) or conditional (e.g., JZ, JNZ, JE, JNE).

Example:

section .text
 global _start

_start:
 mov eax, 5 ; Set EAX to 5

 cmp eax, 10 ; Compare EAX with 10
 jl less_than ; Jump if less than 10
 jg greater_than ; Jump if greater than 10

equal_to:
 ; Code executed if EAX is equal to 10
 ; ...

 jmp end

less_than:
 ; Code executed if EAX is less than 10
 ; ...

 jmp end

greater_than:
 ; Code executed if EAX is greater than 10
 ; ...

end:
 ; Code after the conditional jumps
 ; ...

207

Exercise: Analyze the following assembly code snippet and determine the value of eax at the end.

In this code, the jmp instruction is used to control the flow of execution. The program starts by
initializing the EAX register to 1. It then jumps to label2, where it adds 2 to EAX. It then jumps to label1,
where it adds 3 to EAX. Finally, it jumps to end, where it moves the value of EAX into EBX and then
exits.

The question for this would be: "What is the value of the EAX register at the end of execution?" The
answer is 6, because 1 + 2 + 3 = 6.

Loops
Loops in assembly are typically constructed using jump instructions and loop counters. Common loop
instructions include LOOP, LOOPZ, and LOOPE.

Example:

section .text
 global _start

_start:
 mov eax, 1 ; EAX = 1

 jmp label2 ; Jump to label2

label1:
 add eax, 3 ; EAX = EAX + 3
 jmp end ; Jump to end

label2:
 add eax, 2 ; EAX = EAX + 2
 jmp label1 ; Jump to label1

end:
 ; Exit the program
 mov ebx, eax
 mov eax, 1
 int 0x80

section .text
 global _start

_start:
 mov ecx, 5 ; Set loop counter to 5

LoopStart:
 ; Code to be repeated
 ; ...

208

In this code, the program starts at the _start label. The ECX register is initially set to 5 using the mov
instruction to serve as the loop counter.

The code inside the LoopStart section represents the block of code that will be repeated in the loop.
In this case, it prints the message "Hello, World!" to the standard output using the write system call.

After executing the code inside the loop, the LOOP instruction decrements ECX and jumps back to the
LoopStart label as long as ECX is not zero.

Once ECX becomes zero, the loop terminates, and the program proceeds to the code after the loop.
Finally, the program exits by invoking the exit system call with an exit code of 0.

Exercise: Analyze the following assembly code snippet and determine the value of ebx at the end.

 ; Print a message
 mov edx, message_len ; Length of the message
 lea ecx, [message] ; Address of the message
 int 0x80 ; Invoke system call

 loop LoopStart ; Decrement ECX and jump to LoopStart if ECX is not zero

 ; Exit the program
 mov eax, 1 ; System call number for exit
 xor ebx, ebx ; Exit code 0
 int 0x80 ; Invoke system call

section .data
 message db 'Hello, World!', 10
 message_len equ $ - message

section .data

section .text
 global _start

_start:
 mov ebx, 0 ; Initial value of ebx
 mov ecx, 5 ; Loop 5 times

myloop:
 add ebx, 2 ; Add 2 to ebx each iteration
 loop myloop ; Loop until ecx == 0

 ; Exit
 mov eax, 1 ; System call number (sys_exit)
 xor ebx, ebx ; Exit code
 int 0x80 ; Call kernel

209

Analyzing Code Flow

Control Flow Graphs (CFGs)
Control flow graphs are a visual representation of the code flow within a program, showing the
relationships between basic blocks of code. CFGs can be created manually or generated using reverse
engineering tools such as IDA Pro or Ghidra.

Example:

1. Load a compiled program into IDA Pro or Ghidra.
2. Navigate to the function you wish to analyze.
3. Generate a control flow graph for the function using the tool's built-in features.

Exercise:

1. Choose a compiled program written in a programming language you are familiar with.
2. Generate a control flow graph for one or more functions within the program using a reverse

engineering tool.
3. Analyze the control flow graph to identify control structures, loops, and potential obfuscation

techniques.

Example:

1. Load a compiled program into a disassembler or static analysis tool.
2. Examine the code flow and control structures within the program, identifying patterns and

potential obfuscation techniques.

Exercise:

1. Choose a compiled program or sample malware.
2. Perform a static analysis of the code, focusing on the code flow and control structures.
3. Identify any obfuscation techniques, hidden functionality, or malicious behavior.

210

Identifying and Analyzing Function Calls and Libraries
Reverse engineering is an essential process for understanding the inner workings of software, both for
legitimate purposes such as vulnerability assessment and malware analysis and for potentially illicit
activities like cracking software protections.

Identifying Function Calls

Function calls are fundamental building blocks in most programming languages. Identifying function
calls in a disassembled or decompiled program can provide valuable insights into its behavior.

Direct and Indirect Function Calls

There are two primary types of function calls: direct and indirect. Direct function calls involve the target
function's address being specified directly, while indirect function calls use registers or memory
locations to hold the target address.

Example of a direct function call in x86 assembly:

This example is a simple program that calls a function at a specific address (0x400080). The function
at this address moves the value 5 into the ebx register and then returns to the caller. The call instruction
is used to call the function at the given address, and the ret instruction is used to return from the
function.

Example of an indirect function call in x86 assembly:

call 0x400080 ; Calling the function at the address 0x400080

section .text
 global _start

_start:
 mov eax, target_address ; Move the target address into EAX
 call eax ; Indirect call using EAX as the target address

 ; Rest of the code

section .data
 target_address dd 0x400080 ; Target address stored in a data section

211

Code Injection, Hooking, and Hijacking

Code Injection
Code injection is a technique where an external process introduces and executes arbitrary code within
the address space of another process.

Process Injection on Windows

Process injection is a method of executing arbitrary code in the address space of a separate live
process. Running code in the context of another process allows attackers to make their actions harder
to detect, as the injected code can be masked as legitimate activity. It can be used by malware for
persistence and evasion from some security solutions.

Here is a simplified step-by-step illustration of how process injection might work in a Windows
environment:

1. Identify a target process: The first step is to find a process into which code will be injected.
Often, malware will look for processes that are likely to be running on the victim's machine
and are unlikely to attract attention.

2. Open the target process: The malware must open the target process with certain rights that

allow for writing and code execution. This can be done using the OpenProcess() function in
the Windows API.

3. Allocate space in the target process: The malware must allocate space in the target process's

memory to write the code to be executed. This can be done using the VirtualAllocEx() function
in the Windows API, which allows for memory allocation in another process's address space.

4. Write the code into the target process: The malware writes the code to be executed into the

newly allocated memory space. This can be done using the WriteProcessMemory() function in
the Windows API.

5. Execute the injected code: The malware must create a new thread in the target process that

starts executing the injected code. This can be done using the CreateRemoteThread() function
in the Windows API.

6. Cleanup (optional): In some cases, the malware may clean up traces of the injection to further

avoid detection, using functions like VirtualFreeEx() to deallocate the memory, and
CloseHandle() to close the handle to the process once the injection is done.

This is a high-level overview and actual implementations may vary. Also, modern security solutions are
quite adept at detecting classic process injection techniques, so malware often employs more
sophisticated techniques to avoid detection.

In the CreateRemoteThread method, you write code directly into the process's memory using
WriteProcessMemory, then create a new thread with CreateRemoteThread to execute that code.

212

Example of code injection using CreateRemoteThread:

Hooking
Malware often uses hooking techniques to intercept system calls, alter the behavior of applications or
hide its presence. Here's a practical example of how this might work in the context of a Windows
environment:

1. Identify a function to hook: Malware often targets critical Windows API functions that are
used for system operations, such as file handling, network communications or process
management. For instance, the ReadFile() function, which is used to read data from a file,
could be a potential target.

2. Write a hook function: The malware author would write a hook function to replace or

augment the behavior of the original function. For example, if the ReadFile() function is being
hooked, the malware could replace it with a function that checks if the file being read contains
certain information. If it does, the malware could either block the file read operation, alter the
data being read, or log the data for later use.

3. Install the hook: The malware needs to install the hook, so that calls to the original function

are redirected to the malicious hook function. There are several techniques to do this:

o Inline hooking: The malware could modify the code of the ReadFile() function directly in
memory. This is typically done by replacing the first few bytes of the function (the
function's prologue) with a jump instruction that points to the malicious hook function.
The original prologue is saved and executed in the malicious hook function to maintain the
original functionality.

o Import Address Table (IAT) hooking: The malware could also modify the Import Address

Table of a process. The IAT is used by the Windows loader to resolve function addresses at
load time. By changing the address of ReadFile() in the IAT to point to the malicious hook
function, all calls to ReadFile() would be redirected to the malware's function.

o API Splicing: This technique involves modifying the function prologue similar to inline

hooking, but also altering the original function's bytes at the end of the function to jump
back to the malicious code, creating a splice. This is a more stealthy and resilient form of
hooking.

These techniques are often used by malware to evade detection and carry out malicious activities.
Antivirus software often includes mechanisms to detect such hooking techniques and alert the user or

// Assume we have a handle to the target process in hProcess

// Allocate some memory in the target process
LPVOID pRemoteCode = VirtualAllocEx(hProcess, NULL, sizeOfCode, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

// Write our code into the allocated memory
WriteProcessMemory(hProcess, pRemoteCode, pCode, sizeOfCode, NULL);

// Create a new thread in the target process to execute our code
HANDLE hThread = CreateRemoteThread(hProcess, NULL, 0, (LPTHREAD_START_ROUTINE)pRemoteCode, NULL, 0, NULL);

213

block the malware. Understanding these techniques is key for both malware analysis and the
development of effective antivirus tools.

The following exercise examples should only be performed in a controlled, isolated environment:

1. Understanding Windows APIs and DLLs: Write a simple program that makes use of some
common Windows APIs, such as file or network-related APIs, and trace these API calls using a
debugger or a similar tool.

2. Understanding Inline Hooking: Write a simple program and then manually modify its memory

using a debugger to change the flow of the program. You can use this exercise to understand
the concept of inline hooking without actually installing a hook.

3. Understanding IAT Hooking: An exercise for understanding IAT hooking could involve

inspecting the IAT of a process. You can use tools like Process Explorer to do this. You can then
modify your own program to change the addresses in the IAT and observe how it affects the
program's behavior.

4. Understanding API Splicing: Write a simple program that calls a certain API, and then using a

debugger to manually modify the program's memory to alter the API's behavior.

5. Detecting Hooking: Write a program that can detect hooking techniques. This could involve
scanning the IAT for unusual addresses, checking for modifications to a function's prologue, or
checking for jumps at the end of functions (indicative of API splicing).

6. Reverse Engineering Malware: For advanced learners, a useful exercise would be to reverse

engineer real-world malware samples (in a safe and controlled environment) to see how they
use hooking techniques. This can provide a practical understanding of how hooking is used in
the wild.

This example uses the Windows API and is written in C. The program scans the Import Address Table
(IAT) of kernel32.dll for suspicious function addresses that may indicate hooking.

#include <windows.h>
#include <stdio.h>

// Get the IAT of kernel32.dll
IMAGE_IMPORT_DESCRIPTOR* getIAT(HMODULE module) {
 IMAGE_DOS_HEADER* dosHeader = (IMAGE_DOS_HEADER*)module;
 IMAGE_NT_HEADERS* ntHeaders = (IMAGE_NT_HEADERS*)((BYTE*)module + dosHeader->e_lfanew);

 return (IMAGE_IMPORT_DESCRIPTOR*)((BYTE*)module + ntHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
}

214

This C program is inspecting the Import Address Table (IAT) of the kernel32.dll module for any function
hooking. The IAT is a table that a Windows executable uses to call functions in dynamically linked
libraries (DLLs). When a function is hooked, its entry in the IAT is changed to point to a different
function. This can be used by both legitimate software and malware to alter the behavior of function
calls. Here's a breakdown of what the program does:

• The getIAT function takes a module handle and returns a pointer to its IAT. It does this by:

o First, casting the module handle to a IMAGE_DOS_HEADER pointer. This is a struct that
represents the DOS header of the executable, which is always at the start of a Windows PE file.

o Then, it calculates a pointer to the NT headers, which follow the DOS header. This is done by
adding the e_lfanew field of the DOS header (which stores the file address of the NT headers)
to the base address of the module.

o Finally, it calculates a pointer to the IAT by adding the VirtualAddress of the IAT (which is stored
in the DataDirectory array of the optional header) to the base address of the module.

• The main function:

o First, gets a handle to the kernel32.dll module using GetModuleHandle.
o Then, it gets a pointer to the IAT of this module using getIAT.
o It iterates over each entry in the IAT using a while loop. Each entry represents a DLL that the

module imports functions from.
▪ For each entry, it checks if the DLL name matches "kernel32.dll". This is done by adding

the Name field of the entry (which is an offset from the base of the module to a null-
terminated string) to the base address of the module, and then comparing this string with
"kernel32.dll".

int main() {
 HMODULE module = GetModuleHandle("kernel32.dll");
 IMAGE_IMPORT_DESCRIPTOR* iat = getIAT(module);

 while (iat->Name) {
 char* libName = (char*)((BYTE*)module + iat->Name);
 if (_stricmp(libName, "kernel32.dll") == 0) {
 IMAGE_THUNK_DATA* thunk = (IMAGE_THUNK_DATA*)((BYTE*)module + iat->OriginalFirstThunk);
 while (thunk->u1.AddressOfData) {
 IMAGE_IMPORT_BY_NAME* import = (IMAGE_IMPORT_BY_NAME*)((BYTE*)module + thunk-
>u1.AddressOfData);
 FARPROC funcAddress = GetProcAddress(module, (LPCSTR)import->Name);

 if (funcAddress != (FARPROC)((BYTE*)module + thunk->u1.Function)) {
 printf("Hook detected: %s\n", import->Name);
 }

 thunk++;
 }
 }

 iat++;
 }

 return 0;
}

215

▪ If the DLL name matches, it iterates over each function that the module imports from this
DLL. This is done by treating the OriginalFirstThunk field of the entry as an offset from the
base of the module to an array of IMAGE_THUNK_DATA structures, and then iterating over
this array.

▪ For each imported function, it first gets a pointer to its IMAGE_IMPORT_BY_NAME
structure, which contains the name of the function. This is done by adding the
AddressOfData field of the IMAGE_THUNK_DATA structure (which is an offset from the
base of the module to the IMAGE_IMPORT_BY_NAME structure) to the base address of
the module.

▪ Then, it gets the actual address of the function in memory using GetProcAddress.
▪ Finally, it checks if this actual address matches the address stored in the IAT. This is done

by comparing the funcAddress with the Function field of the IMAGE_THUNK_DATA
structure (which is an offset from the base of the module to the function's entry in the
IAT). If these don't match, it prints a message indicating that a hook has been detected.

o After checking all the functions of a DLL, it moves to the next DLL by incrementing the IAT
pointer.

This program can detect a common form of IAT hooking where the IAT entry of a function is changed
to point to a different function. However, it won't detect more advanced forms of hooking that involve
changing the function code itself.

216

Hijacking
Code hijacking, also known as DLL hijacking, is a technique that can be used by an attacker to make a
legitimate application execute malicious code. The technique takes advantage of the way Windows
searches for DLLs (Dynamic Link Libraries) to load into a program.

When a Windows application starts, it often needs to load DLLs. Windows uses a specific search order
to find these DLLs. If the application does not specify an absolute path to the DLL, Windows will search
for the DLL in various locations in a specific order, which usually is:

1. The directory from which the application loaded.
2. The system directory.
3. The 16-bit system directory.
4. The Windows directory.
5. The current directory.
6. The directories listed in the PATH environment variable.

In a DLL hijacking attack, an attacker places a malicious DLL with the same name as a legitimate DLL
that the application uses into one of the directories that Windows searches before it reaches the
directory that contains the legitimate DLL.

When the application starts, it loads the malicious DLL instead of the legitimate DLL, and the malicious
code in the DLL is executed.

Here's a simplified example of how you might demonstrate this:

1. Identify a target application that loads a DLL for which it does not specify an absolute path.
Let's say that the application loads a DLL named vulnerable.dll.

2. Create a DLL named vulnerable.dll that contains malicious code. This code will be executed

when the DLL is loaded. For example, the DLL might create a simple file on the desktop when
it's loaded:

#include <windows.h>

typedef void (*MYPROC)(LPWSTR);

// This is the malicious code that will be run when the DLL is loaded.
void RunMaliciousCode() {
 system("echo This is a test > C:\\Users\\User\\Desktop\\test.txt");
}

// This function forwards calls to the legitimate DLL.
void ForwardCallToLegitimateDLL() {
 HMODULE hmod = LoadLibrary(L"C:\\path\\to\\legitimate\\vulnerable.dll");
 if (hmod != NULL) {
 MYPROC ProcAdd = (MYPROC) GetProcAddress(hmod, "FunctionName");
 if (NULL != ProcAdd) {
 (*ProcAdd) (L"Message");
 }
 FreeLibrary(hmod);
 }
}

217

3. Place your malicious vulnerable.dll in the same directory as the target application's executable
file.

4. Start the target application. Windows will find and load your malicious vulnerable.dll instead

of the legitimate vulnerable.dll, and the code in your DLL will be executed.

The purpose of this code is to demonstrate a technique where a malicious DLL disguises itself as a
legitimate DLL by forwarding calls to the legitimate DLL while also executing malicious code. This allows
the attacker to perform unauthorized actions while maintaining the appearance of normal operation
by utilizing legitimate functionality.

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH:
 RunMaliciousCode();
 ForwardCallToLegitimateDLL();
 break;
 }
 return TRUE;
}

218

Code Obfuscation and Deobfuscation

Common Obfuscation Techniques
Obfuscation is the process of hiding or disguising the true intent, meaning, or functionality of a piece
of code or data. In the context of programming, obfuscation is often used by developers to protect
their intellectual property, prevent reverse engineering, or enhance the security of their software.

String Obfuscation

String obfuscation is the process of hiding or disguising the contents of a string. Developers often use
string obfuscation to protect sensitive information, such as API keys or passwords, from being easily
discovered in their code.

Example: Original string: "API_KEY"

Obfuscated string: "\x41\x50\x49\x5f\x4b\x45\x59"

Exercise: Obfuscate the following string: "PASSWORD"

Control Flow Obfuscation

Control flow obfuscation is a technique used to make the code's execution path more difficult to
understand. This can be achieved by introducing false conditional statements, loops, or other code
constructs that do not contribute to the actual functionality of the program.

Example: Original code

Obfuscated code:

def add_numbers(num1, num2):
 sum = num1 + num2
 return sum

result = add_numbers(3, 5)
print(result)

import random
from math import sqrt
from datetime import datetime

def X012X(numX001, numX002):
 dummy1 = sqrt(random.randint(1,100)) # dummy operation
 now = datetime.now() # dummy operation
 sumX001 = numX001 + numX002 - dummy1 + dummy1 # the dummy variable is added and subtracted, so it has no
effect
 dummy2 = now.year # dummy operation
 return sumX001 + dummy2 - dummy2 # the dummy variable is added and subtracted, so it has no effect

resultX001 = X012X(3, 5)
dummy3 = sqrt(resultX001) # dummy operation
print(resultX001 + dummy3 - dummy3) # the dummy variable is added and subtracted, so it has no effect

219

Exercise: Obfuscate the following code snippet.

Variable and Function Renaming

Variable and function renaming is an obfuscation technique that replaces descriptive names with
meaningless or random names, making the code harder to understand.

Example: Original code

Obfuscated code:

Exercise: Rename the variables and functions in the following code snippet.

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n - 1)

number = 5
fact = factorial(number)
print("The factorial of", number, "is", fact)

def calculate_area(length, breadth):
 area = length * breadth
 return area

length = 5
breadth = 10
area = calculate_area(length, breadth)
print("The area is", area)

def xYz(aBc, dEf):
 mNop = aBc * dEf
 return mNop

aBc = 5
dEf = 10
mNop = xYz(aBc, dEf)
print("The area is", mNop)

def calculate_distance(speed, time):
 distance = speed * time
 return distance

def print_distance(distance):
 print(f"The distance covered is {distance} units.")

speed = 10
time = 5
distance = calculate_distance(speed, time)
print_distance(distance)

220

Instruction Substitution
Instruction substitution is the process of replacing a simple instruction with a more complex, but
functionally equivalent, instruction set. This can make the code more challenging to analyze and
understand.

Example: Original code

Obfuscated code:

Hands-on Tasks

Task:

1. Write a simple program in your preferred programming language.
2. Apply at least two obfuscation techniques from this chapter.
3. Share the original and obfuscated versions of the code with a peer, and analyze each other's

obfuscated code to identify the techniques used.

Task:

1. Find an open-source project with a well-documented codebase.
2. Select a small portion of the code and apply at least three obfuscation techniques.
3. Compare the obfuscated code with the original code and analyze the effectiveness of the

obfuscation.

By practicing these techniques through examples and hands-on exercises, you should have gained a
better understanding of how these methods can be applied to protect intellectual property, prevent
reverse engineering, and enhance software security.

def add_numbers(num1, num2):
 return num1 + num2

number1 = 5
number2 = 10
sum_result = add_numbers(number1, number2)
print("The sum of", number1, "and", number2, "is", sum_result)

def aBcD(xYz, wVu):
 dummy1 = 0 # dummy command
 dummy2 = xYz - (-wVu) # using subtraction and unary minus to simulate addition
 return dummy2 + dummy1 # adding a dummy command that doesn't affect the result

xYz = 5
wVu = 10
dummy3 = aBcD(xYz, wVu)
print("The sum of", xYz, "and", wVu, "is", dummy3)

221

Manual and Automated Deobfuscation Methods
Deobfuscation is the process of reversing the obfuscation techniques applied to a piece of code or data
to reveal its original form. Deobfuscation can be performed manually, by analyzing the obfuscated
code and applying reverse engineering techniques, or automatically, by using specialized tools
designed to identify and reverse obfuscation.

Manual Deobfuscation

Manual deobfuscation involves the careful analysis of obfuscated code to understand its functionality
and remove or reverse the obfuscation techniques applied to it. This can be a time-consuming process,
as it often requires a deep understanding of programming languages, assembly languages, and reverse
engineering techniques.

String Deobfuscation

Example: Obfuscated string: "\x41\x50\x49\x5f\x4b\x45\x59"

Deobfuscated string: "API_KEY"

Exercise: Deobfuscate the following string: "\x50\x41\x53\x53\x57\x4f\x52\x44"

Automated Deobfuscation
Automated deobfuscation involves the use of specialized tools and algorithms to identify and reverse
obfuscation techniques applied to a piece of code. These tools can often deobfuscate code more
quickly and efficiently than manual methods, although they may not always be successful in reversing
all obfuscation techniques.

Decompilers

Decompilers are tools that can convert compiled code (e.g., bytecode or machine code) back into a
high-level programming language, making it easier to analyze and deobfuscate. Examples of popular
decompilers include JD-GUI for Java and Ghidra for multiple languages.

Exercise:

1. Choose a compiled program written in a programming language you are familiar with.
2. Use an appropriate decompiler to convert the compiled code back into a high-level

programming language.
3. Analyze the decompiled code to identify any obfuscation techniques used and attempt to

reverse them.

Deobfuscation Tools

There are several tools available that are specifically designed to deobfuscate code. These tools can
automatically identify and reverse many common obfuscation techniques. Examples of popular
deobfuscation tools include de4dot (for .NET applications) and JADX (for Android applications).

222

Exercise:

1. Choose a piece of obfuscated code or an obfuscated application.
2. Use an appropriate deobfuscation tool to attempt to reverse the obfuscation techniques used.
3. Compare the deobfuscated code with the original (if available) to evaluate the effectiveness

of the deobfuscation tool.

Malware Classification and Attribution
Malware Classification and Attribution are two important aspects of cybersecurity that involve
identifying and understanding malicious software (malware) and determining its origin or the entity
responsible for creating it.

Malware Classification refers to the process of categorizing different types of malware based on their
characteristics, behavior, and functionality. There are various methods and techniques used to classify
malware, including static analysis, dynamic analysis, signature-based detection, behavior-based
detection, and machine learning-based approaches. These methods help security researchers and
analysts understand the nature of the malware, its potential impact on systems, and develop
appropriate countermeasures.

Malware can be classified into different categories such as viruses, worms, Trojans, ransomware,
spyware, adware, rootkits, and more. Each category has its own unique features and methods of
propagation, and understanding these classifications helps in devising effective defense strategies and
mitigating the risks associated with malware.

Malware Attribution, on the other hand, involves determining the origin or the individuals or groups
responsible for creating and distributing the malware. Attribution can be a challenging task as malware
creators often employ various techniques to hide their identities and obfuscate their activities.
However, attribution is crucial for identifying the motives behind an attack, understanding the threat
landscape, and potentially taking legal action against the perpetrators.

The process of malware attribution typically involves collecting and analyzing various pieces of
evidence such as the malware's code, infrastructure used for command and control (C&C), network
traffic, email headers, social engineering techniques, and even geopolitical factors. This evidence is
analyzed by cybersecurity experts, intelligence agencies, and law enforcement agencies to trace back
the origin of the malware and attribute it to specific individuals, criminal organizations, nation-states,
or hacking groups.

Malware classification and attribution are interconnected processes that complement each other. By
analyzing and classifying malware, security experts can gain insights into its behavior and
characteristics, which can aid in the attribution process. Conversely, identifying the source of malware
can help in understanding its classification, purpose, and potential impact.

Similarity Analysis
Similarity analysis involves comparing two or more malware samples to determine their similarity. This
can help identify whether different malware samples were likely developed by the same threat actor.

223

Binary and Structural Similarity

Binary similarity involves comparing the binary representations of two malware samples. This can be
done using techniques such as fuzzy hashing.

Structural similarity involves comparing the structures of two malware samples, such as their control
flow graphs.

Example of computing binary similarity in Python using the ssdeep library:

Practical Exercises

Exercise: Clustering

1. Collect a set of malware samples. You can use the VirusShare or VX-Underground datasets for
this purpose.

2. Extract features from each malware sample. These features could be byte histograms,
instruction frequencies, etc.

3. Use a clustering algorithm (such as K-Means) to group the malware samples based on the
extracted features. How well does the clustering algorithm group similar malware?

Exercise: Similarity Analysis

1. Select two malware samples from the same family and two from different families.
2. Compute the binary similarity between the samples using a fuzzy hashing technique.
3. Compare the similarity scores. Are the scores higher for samples from the same family?

import ssdeep

def calculate_ssdeep_hash(filepath):
 with open(filepath, 'rb') as file:
 file_data = file.read()
 hash_value = ssdeep.hash(file_data)
 return hash_value

Provide the path to the malware file
malware_file_path = 'path/to/your/malware.file'

Calculate the SSDeep hash for the malware file
hash_result = calculate_ssdeep_hash(malware_file_path)

Print the resulting hash value
print("SSDeep Hash: {}".format(hash_result))

224

Malware Family and Campaign Attribution

Malware Family Attribution
Malware family attribution involves associating a malware sample with a particular family of malware.
This is typically based on shared characteristics among the samples.

Signature-Based Attribution

One common approach is signature-based attribution. This involves creating unique signatures for
each malware family based on static characteristics and using these to identify family members.

Introduction to YARA

YARA is a powerful tool used by malware researchers, incident response teams, and forensic analysts
to identify and classify malware. Its name stands for "Yet Another Ridiculous Acronym," but there's
nothing ridiculous about its capabilities. At its core, YARA is a pattern-matching engine, allowing users
to create rules that can be used to identify and categorize different types of malware based on
distinctive characteristics.

YARA rules consist of a set of strings (or binary data) and a boolean expression (known as the condition)
which determine whether or not a particular file or process matches the rule. This makes YARA a
valuable tool in the realm of malware analysis, where it is often crucial to quickly and accurately
identify malicious software.

Writing Basic YARA Rules

A YARA rule consists of three main sections: rule identifiers, meta-information, and rule body. Here's a
simple example:

In this example, "silent_banker" is the rule identifier and "trojan" is the tag. The meta section provides
additional information about the rule. The strings section defines the patterns that YARA will look for.
The condition section specifies the logical conditions under which the rule will be triggered. In this
case, if any of the three defined strings are found, the rule will be triggered.

rule silent_banker : trojan
{
 meta:
 description = "Silent Banker Trojan"
 author = "John Doe"
 reference = "www.virusinfo.com/silentbanker"
 date = "2023-05-16"
 strings:
 $a = {6A 40 68 00 30 00 00 6A 14 8D 91}
 $b = "100032"
 $c = "This program cannot be run in DOS mode."
 condition:
 $a or $b or $c
}

225

Advanced YARA Rule Features

YARA also includes advanced features that make it more powerful and flexible. For example, it supports
regular expressions, which allows for more complex pattern matching. It also has built-in functions for
analyzing specific types of data, such as Portable Executable (PE) files.

In this example, YARA checks the first two bytes of the file for the "MZ" signature (0x5A4D) that
identifies it as a DOS MZ executable, and then it checks for the "PE\0\0" signature (0x00004550) at the
offset specified by the e_lfanew field (at offset 0x3C in the DOS MZ header).

Exercise: Write a YARA rule to detect a file containing the string "malware_sample". The rule should
be tagged as "sample" and include the necessary meta-information.

Exercise: Modify the above rule to search for either "malware_sample" or "malware_test".

Exercise: Write a YARA rule that identifies a PE file that contains the string "malware_sample". Use the
PE module provided by YARA.

Hands-On Task
To solidify your understanding of YARA, download several malware samples from a reputable source
such as "theZoo" that provides live malware samples for educational purposes, available on GitHub.

Task: Create a directory and place the downloaded malware samples in it. For the purpose of this
exercise, let's assume this directory is named "malware_samples".

Task: Write a YARA rule to match the malware samples based on unique strings or byte sequences
that you identify. Remember to include relevant metadata. Save this rule as "malware_rule.yar".

For example, if you discover that a malware sample contains a unique string
"BadMalwareSignature123", your rule might look like this:

rule PE_File_Detection
{
 meta:
 description = "Detect PE Files"
 author = "John Doe"
 date = "2023-05-16"
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550
}

rule Bad_Malware_Signature : malware
{
 meta:
 description = "Detects the unique signature of a malware"
 author = "Your Name"
 reference = "theZoo malware samples"
 date = "2023-05-16"
 strings:
 $s1 = "BadMalwareSignature123"
 condition:
 $s1
}

226

Behavioral Attribution

Behavioral attribution involves observing the dynamic behavior of malware in a sandbox environment.
This can include network communications, file system interactions, registry modifications, etc.

Campaign Attribution

Campaign attribution involves linking individual malware samples to broader cyber threat campaigns.
This requires an understanding of the tactics, techniques, and procedures (TTPs) used by threat actors.

Infrastructure Analysis

Infrastructure analysis involves examining the command and control (C2) servers, domains, and IP
addresses associated with malware to link them to specific campaigns.

TTP Analysis

TTP analysis involves identifying the unique tactics, techniques, and procedures used by a threat actor,
which can be used to attribute malware samples to specific campaigns.

Practical Exercises

Exercise: Campaign Attribution

1. Choose a known cyber threat campaign and research its associated TTPs and infrastructure.
2. Collect malware samples that are suspected to be associated with this campaign.
3. Try to attribute the malware samples to the chosen campaign using the TTPs and infrastructure

you researched. Tools like Maltego can be useful for infrastructure analysis.

Identifying and Understanding Malware Infrastructure
Malware infrastructure refers to the set of hardware, software, networks, and data that malware
utilizes to operate and propagate. It often includes command-and-control (C&C) servers, botnets,
exploit kits, distribution websites, and other tools that enable malware to invade, infect, and control
host systems. Understanding malware infrastructure is crucial for cybersecurity professionals, as it can
provide insights into how to detect, prevent, and mitigate threats.

Components of Malware Infrastructure

Command and Control Servers

C&C servers are centralized computers that control the operations of malware once it has infiltrated a
system. Malware communicates with the C&C server to receive instructions and to send back stolen
information.

Botnets

Botnets are networks of infected computers, or "bots", controlled by an attacker. They can be used for
various malicious purposes, including DDoS attacks, click fraud, and spreading malware.

227

Exploit Kits

Exploit kits are software systems designed to find vulnerabilities in systems and exploit them to
distribute malware.

Malware Distribution Websites

These are websites or domains used to host and distribute malware, often disguised as legitimate
software.

Identifying Malware Infrastructure
Effective identification of malware infrastructure involves recognizing the signs of infection and then
tracing the malware back to its source. Techniques include network analysis, code analysis, and threat
hunting.

Network Analysis

By analyzing network traffic, we can identify patterns consistent with malware activity. This may
include unusual levels of data transfer, strange IP connections, or connections at odd times.

Code Analysis

Examining the malware code can provide clues about its origin, purpose, and method of operation.
For example, we might find hard-coded IP addresses pointing to a C&C server.

Threat Hunting

Threat hunting is the proactive search for malware or vulnerabilities within a system. It often involves
looking for signs of compromise, such as changes in system behavior, and tracing these back to their
source.

Hands-on Example: Tracking a Botnet
We have discovered a host in our network sending out unusual amounts of traffic, suggesting it might
be part of a botnet.

Step 1: Capture Network Traffic. Using tools like Wireshark, capture and analyze the network traffic
from the suspect host.

Step 2: Identify C&C Communication. Look for patterns that suggest C&C communication, such as
regular beaconing to an external IP address.

Step 3: Isolate Malware. Use a sandbox environment to isolate the malware and prevent it from
causing further damage.

Step 4: Analyze the Malware. Use disassembly and debugging tools to analyze the malware's code.

Step 5: Identify the C&C Server. Look for hard-coded IP addresses or domain names that might point
to the C&C server.

228

Advanced Dynamic Malware Analysis

Advanced dynamic malware analysis involves more sophisticated and in-depth techniques for
analyzing and understanding the behavior, capabilities, and intentions of malware. It goes beyond
basic dynamic analysis and incorporates advanced methodologies and tools to gain a deeper
understanding of the malware's techniques and evasion mechanisms. Here are some key aspects of
advanced dynamic malware analysis:

1. Environment Emulation: Advanced dynamic analysis often involves emulating a complete
operating system or specific components to create an environment that closely mimics the
target system. This helps researchers observe malware behavior in a realistic setting and detect
evasion techniques that specifically target certain environments or security measures.

2. Code and Data Analysis: In addition to observing the runtime behavior of the malware,

advanced analysis techniques delve into code-level analysis to understand the inner workings
of the malware. This involves disassembling or decompiling the malware to analyze its logic,
data structures, encryption techniques, and any anti-analysis measures it employs.

3. Memory Analysis: Memory analysis plays a crucial role in advanced malware analysis. It

involves inspecting the malware's presence in memory, analyzing process memory dumps, and
examining runtime artifacts to identify its techniques, such as process injection, hooking, or
code manipulation. Memory forensics tools are often used to extract valuable information
from memory snapshots.

4. Anti-Analysis Evasion: Malware creators often employ various techniques to evade detection

and analysis. Advanced dynamic analysis focuses on identifying and bypassing these anti-
analysis measures, such as unpacking, obfuscation, encryption, or behavior-based detection
evasion. This involves using specialized tools and techniques to reveal the true behavior of the
malware.

5. Network Traffic Analysis: Analyzing network traffic generated by malware is crucial in

understanding its communication patterns, command and control infrastructure, and
potential data exfiltration. Advanced dynamic analysis involves capturing and analyzing
network packets to identify malicious activities and gather intelligence about the malware's
network behavior.

6. Automated Behavioral Analysis: Advanced dynamic analysis leverages machine learning and

artificial intelligence techniques to automate the analysis process. Behavioral analysis models
can be trained to detect and classify malware based on their observed behaviors, reducing the
manual effort required for analysis and enabling faster identification and response to new
threats.

7. Malware Family and Attribution: Advanced dynamic malware analysis aims to identify

similarities and patterns among different malware samples to classify them into malware
families or attribute them to specific threat actors. This involves correlating analysis results,
identifying common code fragments or behaviors, and leveraging threat intelligence sources.

Advanced dynamic malware analysis requires a deep understanding of malware analysis techniques,
reverse engineering, computer architecture, and security principles. It often involves using a
combination of commercial and open-source tools, custom scripts, and expertise in various domains
to extract valuable insights and intelligence from the analyzed malware.

229

Advanced Behavioral Analysis

Anti-Analysis Techniques and Countermeasures
In the field of cybersecurity, cybercriminals and malware developers consistently innovate to evade
detection and analysis. As a result, advanced behavioral analysis of malware has become increasingly
complex. Examples and exercises are provided to ensure a comprehensive understanding of the topic.

Anti-Analysis Techniques
Anti-analysis techniques are tactics used by malware to avoid detection and analysis. These techniques
can generally be categorized into three main groups: anti-debugging, anti-VM, and anti-disassembly.

Anti-Debugging

Anti-debugging techniques aim to disrupt or prevent the operation of debugging tools, which analysts
use to understand malware's inner workings.

Example: One common anti-debugging technique involves using the "IsDebuggerPresent" function in
Windows. If a debugger is present, this function returns a non-zero value, allowing the malware to
change its behavior or halt execution.

Anti-VM

Anti-VM techniques help malware detect when it is running inside a virtual machine (VM). Since
analysts often use VMs for safe malware analysis, this can prevent them from studying the malware in
a controlled environment.

Example: A common anti-VM technique involves checking the MAC address of the network adapter.
VMware, for instance, uses MAC addresses that start with "00:0C:29", "00:1C:14", or "00:50:56". If
such an address is detected, the malware may choose not to run or alter its behavior.

1. In the Device Manager, find Network Adapters and click on the arrow to expand the list.

2. Right-click on your network adapter (the one for which you want to change the MAC address)
and click on Properties.

230

3. Click on the Advanced tab.

4. In the Property box, scroll down and select Network Address or Locally Administered Address
(the name might vary).

5. If the value is set to "Not Present," that means your network adapter is using the MAC address
hardcoded into its circuitry. To set your own, you need to select the Value radio button on the
right.

6. Enter the new MAC address in the Value box. MAC addresses are 12-digit hexadecimal

numbers (6 octets). So, it should look like 001122334455 or 00-11-22-33-44-55.

7. Click OK to apply the changes and restart.

After completing these steps, your network adapter should be using the new MAC address that you've
entered. If you face any issues, you might need to disable and re-enable the network adapter or restart
your computer.

231

Anti-Disassembly

Anti-disassembly techniques aim to disrupt disassembly tools, which translate machine code back into
a more human-readable form.

Example: One such technique is inserting bogus or misleading code to confuse disassemblers. This
could involve using instructions that are valid but unlikely in normal programming, causing
disassemblers to misinterpret subsequent code.

Countermeasures
To effectively combat these anti-analysis techniques, various countermeasures can be deployed.

Debugger Detection Mitigation

To thwart anti-debugging techniques, researchers can use stealth debugging techniques or modify the
"IsDebuggerPresent" function's return value using a debugger.

Exercise: Using a debugger like OllyDbg, practice modifying the return value of "IsDebuggerPresent".
Load a sample program that uses this function, set a breakpoint on the function call, and alter the
return value when it hits the breakpoint.

Anti-VM Mitigation

To counter anti-VM techniques, analysts can use VMs that allow hardware and MAC address spoofing,
or use bare metal machines for analysis.

Exercise: Configure a VM with a custom MAC address outside the ranges typically used by VM software.
Use a tool like Wireshark to monitor network traffic and confirm the new MAC address is being used.

232

Anti-Disassembly Mitigation

Against anti-disassembly techniques, manual code analysis is often effective. Additionally, some
advanced disassemblers can handle such evasion techniques.

Exercise: Use a disassembler like IDA Pro to analyze a piece of malware that uses anti-disassembly
techniques. Practice manual code analysis to understand how the malware operates despite the
obfuscation.

Timeline and Correlation Analysis
Advanced behavioral analysis often requires a deep understanding of the sequence of events that
occur during a cyber incident. Timeline and correlation analysis provide the means to explore these
sequences, helping identify patterns and relationships between different activities.

Timeline Analysis

Timeline analysis is the process of constructing and reviewing the sequence of events. It can help to
identify suspicious activities, understand the cause-and-effect relationship between events, and
investigate incidents more effectively.

Understanding Event Logs

Key to timeline analysis is the understanding and utilization of event logs, which record activities within
a system.

Example: In a Windows system, security event logs can contain records of activities such as user logons,
system startups, or changes to security policies. By analyzing these logs, analysts can trace back the
activities leading up to an incident.

Tools for Timeline Analysis

Several tools can assist with timeline analysis. One such tool is "log2timeline," a command line tool
designed to extract timestamps from various files and present them in a unified timeline format.

Exercise: Using a sample event log file, practice extracting a timeline of events with log2timeline. Try
to identify any anomalous events or sequences.

Correlation Analysis

Correlation analysis is about finding relationships between different activities. By correlating events,
analysts can identify patterns that may indicate a coordinated attack.

Correlating Data Sources
Correlation analysis often involves data from multiple sources.

Example: Consider correlating firewall logs with system event logs. A sudden surge in firewall deny
logs, coupled with an unusual system event (like a user logon at an odd hour), could indicate a breach
attempt.

233

Tools for Correlation Analysis

Tools like Security Information and Event Management (SIEM) systems can help automate correlation
analysis. SIEM systems collect and analyze log data from various sources, providing real-time analysis
and correlation of security alerts.

Exercise: With access to multiple log files (firewall, system events, etc.), practice using a SIEM system
like Splunk or ELK Stack to correlate events. Identify patterns and potential security incidents.

Malware Persistence Mechanisms
Persistence mechanisms are techniques used by malware to maintain its presence and operations on
an infected system, even through reboots or attempts at removal. Understanding these mechanisms
is a crucial part of advanced behavioral analysis.

Common Persistence Mechanisms
There are several common techniques that malware uses to maintain persistence on a system.

Registry Keys
Malware often alters Windows registry keys to automatically start each time the system boots.

Example: The HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run registry key
is one common location where malware may add entries to execute every time the user logs in.

Run and RunOnce Keys:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Run
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
o HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

RunServices and RunServicesOnce Keys:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServicesOnce

Start Page Key:

o HKCU\Software\Microsoft\Internet Explorer\Main\Start Page

Policies\Explorer\Run Key:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

Winlogon Key:

o HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

234

Shell Service Object Delay Load (SSODL) Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Browser Helper Objects (BHO) Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects
o SharedTaskScheduler Key:

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler

Services Key:

o HKLM\SYSTEM\CurrentControlSet\Services
o AppInit_DLLs Key:

o HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs
o KnownDLLs Key:

o HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs
o SafeBoot Key:

o HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot

Scheduled Tasks
Malware can create or modify scheduled tasks to execute at regular intervals, ensuring it remains
active on the system.

Example: A piece of malware may create a task scheduled to run every hour, executing a particular file
or command.

235

Service Hijacking
Service hijacking involves malware replacing or modifying system service executables, causing the
malware to run each time the service starts.

Example: A malware may replace the executable for a commonly used service, such as the print
spooler, with its own executable.

RootKits
A rootkit is a type of malware designed to give unauthorized users root or administrative level control
over a computer system without being detected. Rootkits can hide themselves and other processes or
files, making their detection and removal more difficult. They typically infect the operating system,
allowing the attacker to manipulate the system, access and steal information, execute files, modify
system configurations, and hide activities.

Bootkits
A bootkit is a type of rootkit that infects the Master Boot Record (MBR), Volume Boot Record (VBR),
or Boot Configuration Data (BCD) of a computer. This allows the bootkit to load into memory before
the operating system and thus gain full control over the system, bypassing any system defenses or
antivirus software. Bootkits can be particularly difficult to detect and remove, as they can actively hide
themselves and other malware from the operating system.

Detecting Persistence Mechanisms
Identifying persistence mechanisms often involves looking for anomalies in system configurations and
behavior.

Exercise: Using a tool like Sysinternals Autoruns, examine a Windows system for unusual entries in
startup locations. Look for unfamiliar programs, programs with no publisher, or programs that run from
unusual locations.

Removing Persistence Mechanisms
Once a persistence mechanism has been identified, the next step is to remove it.

Exercise: In a safe environment, infect a virtual machine with a piece of malware. Practice identifying
and removing the malware's persistence mechanisms. This may involve editing the registry, changing
scheduled tasks, or restoring original service executables.

Advanced Persistence Mechanisms
Some malware uses more sophisticated techniques for persistence, such as injecting code into running
processes or exploiting system vulnerabilities.

Exercise: Use a tool like Process Explorer to examine running processes on a system. Look for processes
with unusual CPU or memory usage, processes running from unusual locations, or processes with
unusual parent-child relationships.

Understanding and dealing with malware persistence mechanisms is a critical aspect of advanced
behavioral analysis. By learning to identify and remove these mechanisms, you can significantly
improve your ability to respond to and mitigate malware infections.

236

OllyDbg

Introduction to OllyDbg
OllyDbg is a dynamic binary instrumentation (DBI) tool for Microsoft Windows applications. It's
particularly useful for software debugging. It provides a plethora of functionality including complex
breakpoints, memory and stack manipulation, a built-in assembler, and even a plugin architecture for
extendability.

The program enables users to analyze binaries to understand their operation, detect problems, or
uncover potential vulnerabilities in the code. This makes it an essential tool for software developers,
especially those working in security.

What is OllyDbg?

OllyDbg is an assembly level analyzing debugger for Microsoft Windows. Emphasis on binary code
analysis makes it particularly useful in cases where the source is unavailable. It predicts the contents
of registers, recognizes procedures, API calls, switches, tables, constants, and strings, and locates
routines from object files and libraries.

Installation and Setup Process

At the time of this writing, OllyDbg can be downloaded directly from its official website. The tool is
lightweight and doesn't require installation - it runs directly after extracting the contents of the
downloaded file. Let's go through the detailed process:

1. Downloading OllyDbg:
Visit the OllyDbg official website. Download the latest version of OllyDbg.

2. Running OllyDbg:

After extracting the ZIP file, open the extracted folder and run the 'OllyDbg.exe' file.

237

User Interface and Basic Functionality

The user interface of OllyDbg might seem complex at first, but it is very well organized and once you
get accustomed to it, navigating through it becomes a breeze.

Main Window

When you first open OllyDbg, you'll see the main window which is divided into several sections (or
panes).

• CPU Window: This is perhaps the most important window. It displays the disassembled code of
the program being debugged and also shows the current EIP (Extended Instruction Pointer). It's
divided into several sub-windows:

▪ Disassembly
▪ Dump
▪ Stack
▪ Registers

• Executable Modules Window: In OllyDbg, this window shows all the modules (essentially
executable files and dynamic link libraries) that are currently loaded into the process's address
space. Each module corresponds to a particular file on disk. The window shows detailed
information about each module such as its base address, size, entry point, etc.

238

• Memory Map Window: The memory map in OllyDbg shows how the virtual address space of the
debugged process is laid out. It provides information about which regions of memory are currently
allocated, what permissions are set on those regions (e.g., whether they are readable, writable,
executable), what type of memory it is (e.g., heap, stack, image), and more.

• Handles: In OllyDbg, the handles window shows the handles to kernel objects that the debugged
process currently has open. This includes handles to files, registry keys, synchronization objects,
and others. Each handle has a type and an ID associated with it.

239

• Breakpoints Window: This shows the currently set breakpoints.

The arrangement of these sections can be customized to suit your preference by dragging and dropping
windows around.

240

Basic Functionality

1. Loading a program: To begin debugging a program, you need to load it into OllyDbg. This is
done by navigating to File > Open, and then selecting the program executable.

2. Running and Pausing: Once a program is loaded, you can start its execution with the Debug >
Run command or by pressing F9. To pause execution, use Debug > Pause or F12.

3. Stepping through code: To execute code one instruction at a time, you can use Debug > Step
into or F7. To execute a complete function call as one instruction (i.e., not step into it), use
Debug > Step over or F8.

4. Setting breakpoints: Breakpoints are set by clicking on the grey bar to the left of the

disassembly code, or by right-clicking on a line of code and selecting Toggle breakpoint or by
pressing F2. A red highlight indicates a breakpoint.

5. Viewing Registers and Memory: The current state of the CPU's registers is displayed in the
Registers sub-window in the CPU window. The Stack sub-window shows the current stack
frame, and the Dump sub-window can be used to examine memory.

6. Manipulating Data: OllyDbg allows you to modify register values, memory data, and even the
disassembled binary code itself. Right-click on the data you wish to modify and select Edit.

These are just the basic functionalities of OllyDbg. The tool provides much more advanced features
like conditional breakpoints, tracing, and a powerful plugin system to extend its capabilities.

241

Dynamic Analysis with OllyDbg
Malware analysis is a critical part of maintaining cybersecurity. Dynamic analysis provides the ability
to observe the malware's activities in real-time, helping us understand its behavior and potential
impact on the system.

Exercise 1: Simple Malware Debugging

1. Load the Malware: File > Open, then choose your malware sample.

2. Observe the Main CPU Window: Pay attention to the sequence of the operations being
performed by the malware. The malware's actions are crucial to understanding its nature.

3. Set a Breakpoint: If you see any suspicious API calls (like CreateFile, WriteFile,
InternetOpenUrl, etc.), set breakpoints on these lines (F2 or Toggle breakpoint).

4. Run the Malware: Execute with Debug > Run or F9. The debugger will stop at the first
breakpoint.

5. Analyze: Step through the instructions (F7 or F8), monitor the changes in registers and
memory, and note any suspicious activities.

Attaching to a Running Process
Sometimes you may need to analyze a process that is already running, such as a service or a malware
sample that has infected a system. In this case, you can attach OllyDbg to the running process.

Exercise 2: Attaching to a Running Process

1. Start a Process: For this exercise, start a simple process like Notepad.

2. Attach OllyDbg: In OllyDbg, go to File > Attach, and a list of currently running processes will
appear. Select the process you want to attach to, in this case, 'notepad.exe', then click 'Attach'.

3. Debug as Normal: Once OllyDbg is attached, you can debug the process as if you had started

it from OllyDbg.

Stepping through Instructions and Breakpoints
Being able to step through code is essential in dynamic analysis. By doing so, you can follow the
program's execution flow and see how and when different instructions affect the system.

Exercise 3: Stepping through Instructions

1. Load a Program: For this exercise, you could use a simple C++ program.

2. Step into (F7): This will execute one instruction. If the instruction is a function call, OllyDbg will
follow into the function.

3. Step over (F8): This also executes one instruction, but if it's a function call, the entire function
is executed as one step.

242

4. Use Breakpoints (F2): Set breakpoints on lines of interest. OllyDbg will pause execution when
it hits these breakpoints, allowing you to inspect the program's state at these points.

Examining Registers and Memory
OllyDbg provides a real-time view of the CPU's registers and the program's memory, enabling you to
observe how different instructions affect their state.

Exercise 4: Examining Registers and Memory

1. Load a Program: Use the same program as the previous exercise.

2. Run and Pause: Start execution with F9, then pause it with F12.

3. Examine Registers: Look at the Registers sub-window in the CPU window. Observe how the
registers change as you step through instructions.

4. Examine Memory: Use the Dump sub-window to examine memory. Right-click and select
'Follow in Dump' to view the contents of a memory address.

5. Edit Values: Try modifying register and memory values. Right-click on a value and select 'Edit'
to change it.

243

Anti-Debugging and Anti-Analysis Techniques
Malware may use a variety of anti-debugging techniques, such as detecting the presence of a
debugger, creating time delays, and using exception handlers. Let's explore how to recognize and
bypass these techniques.

Exercise 1: Bypassing Debugger Detection

Malware often uses the Windows API function IsDebuggerPresent(). This function checks the PEB
(Process Environment Block) and returns a non-zero value if a debugger is present. To bypass this:

1. Set a breakpoint on IsDebuggerPresent.

2. When the breakpoint is hit, note the return address and let the program continue.

3. The return address is where the return value of IsDebuggerPresent is checked. Set a
breakpoint on this address.

4. When this breakpoint is hit, change the ZF (Zero Flag) in the EFLAGS register to bypass the
debugger check.

Handling Obfuscated and Packed Malware Samples
Obfuscation and packing are common techniques used by malware authors to make their code more
difficult to analyze. Packed malware uses a wrapper program (the packer) that unpacks the actual
malware into memory at runtime.

The PUSHAD instruction is a part of the x86 instruction set and stands for "Push All Registers". It is
used to push the entire state of all general-purpose registers onto the stack in a specific order: EAX,
ECX, EDX, EBX, original ESP, EBP, ESI, and EDI.

In packed executables, it's quite common to see a PUSHAD instruction at the beginning of the
unpacking routine. The purpose is to preserve the state of all the general-purpose registers before the
unpacking process starts. This is done because the unpacking code might change the values of these

244

registers, and it's necessary to restore their original values after the unpacking is completed, to ensure
the correct execution of the original code.

After the unpacking routine has finished, you would typically see a corresponding POPAD command
which pops the state of all general-purpose registers off the stack, restoring them to their state before
the PUSHAD was executed. This ensures that the execution environment for the unpacked code is set
up correctly.

This pair of PUSHAD/POPAD instructions essentially provides a way for the unpacking routine to save
and restore the processor's state, allowing it to use the registers for its own purposes without affecting
the execution of the original code.

Exercise 2: Detecting Packed Malware

One way to detect packed malware is by looking for a high entropy in the executable's sections, which
suggests that the data has been encrypted or compressed.

1. Open the malware sample in OllyDbg.

2. In the CPU window, go to View > Executable modules to see a list of the executable's sections.

3. Sections with high entropy (often .text or .data) may suggest packing.

In OllyDbg and similar debuggers, "Find OEP by Section Hop (Trace Over)" is a function provided by the
OllyDump plugin. OEP stands for "Original Entry Point," which is the point in the program's execution
where control is handed off to the original, unpacked code. When a program is packed or obfuscated,
the OEP is typically hidden, and part of the process of unpacking is finding the OEP.

"Find OEP by Section Hop (Trace Over)" is a specific technique for finding the OEP. It works by tracing
the program's execution until it jumps (or "hops") to a different section of memory, which is often
where the unpacked code is located. The "Trace Over" part means that it steps over subroutine calls,
as opposed to stepping into them, which makes the tracing process faster and more focused on finding
section transitions.

On the other hand, "Trace Into" is a different debugging command that steps into subroutine calls. If
the execution encounters a call to a subroutine, "Trace Into" will follow that call and continue tracing
the execution inside the called subroutine. This provides a more in-depth view of the program's
execution, but it can be slower and more detailed than "Trace Over".

So, the key difference between the two is the level of depth at which they trace the program's
execution. "Trace Over" skips over the details of subroutines, which can be quicker and more efficient
for certain tasks like finding the OEP, while "Trace Into" provides a detailed view of all executed
instructions, which can be useful for a more thorough analysis of the program's behavior.

245

Unpacking and Deobfuscating Malicious Code
Unpacking malware involves tricking the malware into unpacking itself and then dumping the
unpacked code from memory.

Exercise 3: Manual Unpacking

This is a basic unpacking method that works with simple packers:

1. Open the packed malware in OllyDbg.
2. Run the malware. The first breakpoint should be at the packer's OEP (Original Entry Point).
3. Step through the instructions until you reach a JMP instruction that jumps into a different

section. This is typically the unpacking routine.
4. Set a breakpoint on this JMP and run the malware.
5. When the breakpoint is hit, step into the JMP. The unpacked malware should now be in

memory.

246

Reverse Engineering and Code Analysis
Disassembling is the process of converting binary code into assembly code, which is a little more
human-readable. In the context of malware analysis, disassembling allows us to examine the
malware's code.

Exercise 1: Disassembling a Malware Sample

1. Load the malware sample into OllyDbg.
2. The main CPU window displays the disassembled code. This is the code you'll be analyzing.

Identifying Malware Functionalities and Algorithms
The functionalities and algorithms used by malware can tell us a lot about its purpose and behavior.

Exercise 2: Identifying Malware Functionalities

1. Look for suspicious API calls in the disassembled code. For example, file operation calls
(CreateFile, ReadFile, WriteFile, etc.) might suggest file manipulation, and networking calls
(socket, connect, send, recv, etc.) might suggest network communication.

2. Set breakpoints on these calls and run the malware. When a breakpoint is hit, inspect the
parameters to get more information about what the malware is doing.

Reconstructing High-Level Code from Assembly
With enough experience and knowledge, it's possible to reconstruct high-level code from assembly
code. This isn't an exact science, but it can help make the code easier to understand.

Exercise 3: Reconstructing High-Level Code

1. Pick a small section of the disassembled code, like a loop or a function.
2. Try to translate each assembly instruction into a high-level language, like C.
3. Verify your translation by comparing the behavior of the high-level code to the assembly code.

Understanding Control Flow and Logic Structures
Control flow and logic structures (loops, conditionals, etc.) are fundamental to any program, and
malware is no exception.

Exercise 4: Understanding Control Flow

1. Choose a function in the disassembled code.

2. Identify the control flow structures in the function. JMP, JE, JNE, JZ, JNZ, etc. instructions are
used for control flow.

3. Try to translate the control flow structures into a flowchart or high-level code to better

understand the logic of the function.

247

Identifying Encryption and Decryption Routines
Many malware samples encrypt their data or communications to hide their activities. Identifying and
understanding these routines can be crucial to analyzing the malware.

Exercise 5: Identifying Encryption Routines

1. Look for mathematical and bitwise operations in the disassembled code. These are often used
in encryption and decryption routines.

2. Set breakpoints on these operations and run the malware. When a breakpoint is hit, inspect
the parameters and results of the operation. This can give you clues about the encryption or
decryption routine.

248

Malware Debugging Tricks and Tips
Efficient debugging often involves more than just stepping through the code. It requires understanding
the flow of the program, recognizing patterns, and using all the tools at your disposal.

Exercise 1: Conditional Breakpoints

OllyDbg supports conditional breakpoints, which only break when a certain condition is met. This can
be helpful when dealing with loops or recurring functions.

1. Find a recurring function call or loop in your malware sample.
2. Set a breakpoint as you normally would.
3. Right-click the breakpoint and choose ‘Edit’. Here you can set your condition.
4. Test your conditional breakpoint by running the malware sample.

Memory Analysis and Heap Exploitation
Memory analysis involves examining the state of memory at runtime. Heap exploitation involves
manipulating the heap to control program execution.

Exercise 2: Memory Analysis

1. Load a malware sample into OllyDbg.
2. Run the malware and then pause it.
3. Use the Dump window to examine the state of memory.

The "Dump" operation in OllyDbg shows the raw byte data for a specific section of memory. When you
right-click on the ".text" section (which usually contains the executable code for a program) and select
"Dump", OllyDbg will display a window with a hex dump of that section of memory.

The "Dump" window displays the data in several columns:

1. Address: This is the memory location where the data resides.
2. Hexadecimal data: The raw data at that location, displayed as bytes in hexadecimal format.
3. ASCII Representation: This is a representation of the data as ASCII characters. Non-printable

characters are usually displayed as a period (.).

249

By inspecting the dumped memory, you can gain insights about the structure and content of the
program at a low level. This can be particularly useful in reverse engineering, for example, to
understand what an unknown or suspicious program is doing.

Uncovering Hidden Features and Functionalities
Malware often includes hidden features or functionalities intended to evade detection or to only
trigger under certain conditions.

Exercise 3: Uncovering Hidden Functionality

1. Examine the disassembled code for any unusual or suspicious patterns.
2. Look for any conditional statements that could be hiding functionality.
3. Modify the flags or registers to change the outcome of these conditions.

250

OllyDbg Extensions and Plugins
There is a wide variety of OllyDbg plugins available, each serving different purposes. Here are a few
notable ones:

1. OllyDump: This plugin is used to dump process memory, useful for unpacking packed
executables.

2. Olly Advanced: A plugin that helps counter anti-debugging and anti-disassembly techniques.
3. PhantOm: Another plugin that is designed to defeat many common anti-debugging methods.
4. StrongOD: A powerful plugin that provides a variety of anti-anti-debugging measures.
5. OllyScript: This plugin provides a scripting interface to automate tasks in OllyDbg.
6. OllyBone: OllyBone is a plugin that connects OllyDbg with the Immunity CANVAS exploitation

framework.

Exercise: Using OllyDump to Unpack a Packed Executable

Let's use OllyDump, a popular plugin used for unpacking packed malware samples:

1. Download and install OllyDump if you haven't done so already.
2. Load a packed malware sample into OllyDbg.
3. Unpack the malware manually until you've reached the Original Entry Point (OEP).
4. Go to Plugins > OllyDump > Dump debugged process. Choose a location for the dumped file.
5. Open the dumped file in OllyDbg to analyze the unpacked malware.

When you're trying to unpack an executable, your goal is generally to find the original, unpacked code.
This is often hidden inside a layer (or layers) of obfuscation to make analysis more difficult. This
obfuscation is usually created by a packer, which compresses, encrypts, or otherwise transforms the
original code.

One characteristic of packed executables is that they often contain sections of code that appear as
long strings of 00s (null bytes) in a disassembler or debugger. This is because the original code has
been transformed into a form that doesn't resemble typical executable code.

The unpacking routine, which is a part of the executable, is responsible for transforming this
obfuscated code back into its original form at runtime. This routine is essentially a piece of code that
prepares and executes the packed data.

One common approach to unpacking is to run the executable in a debugger until you reach the point
where the unpacking routine has just finished and is about to transfer control to the original code. This
is often represented by a jump instruction (JMP), and it's typically right before you start seeing the 00s.
By setting a breakpoint at this jump and then dumping the process memory, you can often capture the
unpacked code.

Why is it typically right before the 00s? Because the jump instruction is jumping into the code that was
previously obfuscated. The 00s represent the obfuscated or packed code that will be transformed by
the unpacker. Once the jump to the original, now-unpacked code is made, you know that the code has
been prepared for execution and it's time to dump it.

251

Keyboard Shortcuts in OllyDbg
OllyDbg, like any other tool, can be used much more efficiently if you master its keyboard shortcuts.
The following shortcuts are frequently used by malware analysts to debug and dissect malware
binaries:

F2: Set/Remove a breakpoint. This is useful for pausing execution at specific instructions.
F7: Step Into. This is used to step into a subroutine if the next instruction is a subroutine call.
F8: Step Over. This steps over a subroutine call, useful if you don't want to step into
subroutines.
F9: Run. This resumes program execution until the next breakpoint or the end of the program.
F4: Run to Cursor. This resumes execution until it reaches the line of code where your cursor
is currently located.
F12: Execute till return. Executes until the current function returns.
Ctrl+F2: Restart. This stops execution and reloads the binary, useful for starting over.
Ctrl+G: Go to Address. This is used to quickly navigate to a specific address in the code.
Ctrl+L: Go to the previous location in code navigation.
Ctrl+N: Open Names window. Shows a list of recognized symbols in the debugged program.
Alt+M: Opens Memory Map. This shows a list of memory sections.
Alt+C: Opens CPU window. This shows the current state of the CPU, including registers.
Alt+E: Opens Handles window. Shows the handles currently opened by the debugged process.
Ctrl+P: Pauses the execution. Useful for checking the current state in-between breakpoints.

252

Script-based Malware Analysis

Script-based malware analysis refers to the process of analyzing and understanding malicious software
(malware) using various scripting languages and tools. It involves writing scripts or utilizing existing
ones to automate tasks and extract valuable information from malware samples. This analysis
technique is commonly employed by security researchers, analysts, and incident response teams to
gain insights into malware behavior, identify its capabilities, and develop effective countermeasures.

Here are the key steps involved in script-based malware analysis:

1. Obtaining malware samples: Malware samples can be obtained from various sources, such as
honeypots, malware repositories, or captured during security incidents. These samples serve
as the basis for analysis.

2. Setting up a controlled environment: To prevent any unintended consequences, malware

analysis should be performed in a controlled and isolated environment. This usually involves
using virtual machines, sandboxes, or dedicated hardware.

3. Scripting language selection: Different scripting languages can be used for malware analysis,

including Python, PowerShell, JavaScript, or Bash. The choice depends on the analyst's
preferences, the target platform, and the specific analysis requirements.

4. Static analysis: Static analysis involves examining the malware without executing it. Scripts can

be written to extract valuable information from the binary or source code, such as strings,
function calls, and API references. This helps in identifying indicators of compromise (IOCs)
and understanding the malware's structure.

5. Dynamic analysis: Dynamic analysis involves running the malware in a controlled environment

and observing its behavior. Scripts can automate the execution and monitoring process,
capturing system calls, network traffic, and other relevant activities. This helps in
understanding the malware's capabilities, such as file manipulation, network communication,
or persistence mechanisms.

6. Data extraction and reporting: Scripts can be used to extract relevant data from the analysis

process, such as extracted files, network captures, or behavioral logs. This data can then be
analyzed further, and a comprehensive report can be generated summarizing the findings and
providing actionable insights.

7. Post-analysis actions: After analyzing the malware, additional actions may be taken, such as

developing detection signatures, updating antivirus software, or sharing information with
relevant security communities to improve overall cyber defenses.

Script-based malware analysis offers several advantages. It allows for automation of repetitive tasks,
enables scalability in handling large volumes of malware samples, and facilitates collaboration among
analysts through script sharing. Additionally, scripting languages often provide access to powerful
libraries and tools that can aid in analyzing and understanding the malware more effectively.

However, it's important to note that malware analysis is a complex field, and script-based analysis is
just one approach among many. It's essential to stay updated with the latest malware trends,
techniques, and evasion mechanisms to ensure accurate analysis and effective mitigation strategies.

253

Malicious Document Analysis

Analyzing Malicious Microsoft Office and PDF Documents
Malicious documents are a common vector for delivering malware.

Understanding Malicious Documents

Malicious documents often appear normal but contain embedded scripts or exploits. They are typically
delivered via phishing emails and execute their payload when the document is opened.

Exercise: Research real-world examples of phishing emails that have delivered malicious documents.
What indicators of phishing can you identify?

Malicious Microsoft Office Documents

Microsoft Office documents can contain macros—scripts written in VBA (Visual Basic for
Applications)—which are often used to deliver malware.

Exercise: Create a benign Word document and write a simple macro, such as one that changes the
formatting of selected text.

Malicious PDF Documents

PDFs can contain JavaScript or exploits for known PDF reader vulnerabilities. These scripts or exploits
can be used to download and execute malware when the PDF is opened.

Exercise: Find a PDF that contains interactive elements like forms or buttons. These features often use
JavaScript.

Tools for Analyzing Malicious Documents
Several tools can help you analyze malicious documents:

▪ Didier Stevens' oledump.py: A tool for analyzing Microsoft Office documents.
▪ Peepdf: A Python tool for exploring the structure of a PDF file and examining suspicious

elements.
▪ VirusTotal: A website where you can upload suspicious files to be scanned by several antivirus

engines.

Exercise: Try using the tools above with benign documents to familiarize yourself with their
functionality.

Analyzing Malicious Documents

The process for analyzing a potentially malicious document generally involves:

1. Initial Analysis: Use an antivirus scanner or a service like VirusTotal to check for known threats.
2. Static Analysis: Examine the document structure and contents without opening it in its

associated application.
3. Dynamic Analysis: Open the document in a controlled environment to observe its behavior.

Exercise: Perform an initial analysis, static analysis, and dynamic analysis on a benign document.

254

Mitigation and Defense
Protection against malicious documents involves user education (e.g., not opening attachments from
unknown senders), keeping software up to date, and using security controls to block known threats
and detect unusual behavior.

Exercise: List several security controls that could protect against malicious documents.

Extracting and Analyzing Embedded Scripts and Macros
Malicious documents often hide their payloads in embedded scripts or macros.

Recognizing Potential Threats

Before extracting and analyzing embedded elements, it's important to identify suspicious documents.
Indicators might include unusual file sizes, unexpected documents from unknown senders, or warnings
about embedded scripts or macros when opening a document.

Exercise: Find a few examples of phishing emails online. Note any common phrases or tactics that
might suggest the presence of a malicious document.

Extracting Macros and Scripts from Microsoft Office Documents

Microsoft Office documents can contain VBA (Visual Basic for Applications) macros, which can be
viewed and extracted using the built-in Microsoft VBA editor or tools like oledump.py.

Exercise: Create a simple Word document with a benign macro. Use oledump.py to extract the macro
and compare it to the original.

Extracting Scripts from PDF Documents

JavaScript code can be embedded in PDFs, usually for interactive elements like forms but sometimes
for malicious purposes. Tools like Peepdf and PDFiD can help extract embedded JavaScript.

Exercise: Find a PDF with interactive elements online. Use Peepdf to inspect the PDF structure and
identify any JavaScript.

Analyzing Extracted Scripts and Macros

After extraction, scripts and macros can be analyzed using standard script analysis techniques, such as
static and dynamic analysis. This can help identify the script's purpose, potential IOCs, and any
malicious activities.

Exercise: Take a benign script from a document and try to understand its functionality. Use online
resources to research any commands or functions you're not familiar with.

Deobfuscation
Malicious scripts or macros are often obfuscated to evade detection and analysis. Deobfuscation might
involve decoding Base64 strings, removing unnecessary characters, or even stepping through code in
a debugger to understand its logic.

255

Mitigating Document-Based Attacks and Exploits
Document-based attacks are a popular method of distributing malware due to their seeming
innocuousness and widespread use in professional settings.

Identifying Document-Based Threats

Recognizing potential threats is the first step towards mitigation. Indicators of a malicious document
can include unsolicited emails, documents from unknown senders, warnings about embedded scripts
or macros, or unexpected behavior.

Exercise: Research real-world examples of phishing emails that have delivered malicious documents.
Identify common indicators of malicious documents.

Disabling Macros and Scripts

One simple and effective mitigation strategy is disabling macros and scripts by default in applications
such as Microsoft Office and Adobe Reader. This prevents malicious code from running when a
document is opened.

Exercise: Check your settings in Microsoft Word and Adobe Reader. Make sure macros and scripts are
disabled by default.

User Education

Educating users about the risks of opening unexpected or unsolicited documents, the dangers of
enabling macros or scripts, and the signs of a phishing email can help reduce the risk of a successful
attack.

Exercise: Draft an email or create a brief presentation about the risks of document-based attacks and
how to avoid them.

Regular Updates and Patching

Keeping software up to date is crucial, as updates often contain patches for known vulnerabilities that
could be exploited by malicious documents.

Exercise: Ensure that your operating system, Microsoft Office, Adobe Reader, and other key software
are up to date.

Antivirus Software and Intrusion Detection Systems

Using antivirus software can help detect known threats, while intrusion detection systems (IDS) can
identify unusual behavior that might indicate an attack.

Exercise: If you have antivirus software installed, perform a scan on your system. Review the results
and take note of any suspicious findings.

256

Advanced Script Analysis Techniques

Identifying and Analyzing Script-Based Exploits and Shellcode
Script-based exploits are malicious code snippets that take advantage of vulnerabilities in software,
systems, or networks. They can be delivered through various means, such as email attachments,
malicious websites, or embedded in seemingly harmless files.

Common Types of Script-Based Exploits
Some common types of script-based exploits include:

▪ Buffer overflows
▪ SQL injections
▪ Cross-site scripting (XSS)
▪ Remote code execution

Identifying Script-Based Exploits

To identify script-based exploits, security professionals must first be familiar with common exploit
signatures and patterns. This section provides an overview of some techniques for identifying script-
based exploits.

Static Analysis

Static analysis involves examining the script's source code without executing it. This can help identify
potential vulnerabilities, such as hard-coded credentials, insecure functions, or suspicious patterns.

Dynamic Analysis

Dynamic analysis involves executing the script in a controlled environment to observe its behavior. This
can help identify potentially malicious activities, such as unauthorized access or unexpected network
connections.

Shellcode Analysis

Shellcode is a sequence of machine code instructions that, when executed, perform specific tasks,
often related to compromising a system or gaining unauthorized access. Analyzing shellcode is an
essential skill for security professionals.

Disassembly

Disassembling shellcode involves converting the machine code back into a human-readable format,
such as assembly language. Disassembly tools, such as IDA Pro, Ghidra, or Radare2, can be used for
this purpose.

Debugging

Debugging shellcode involves stepping through the code in a debugger, such as GDB or OllyDbg, to
observe its behavior and identify its purpose.

257

Emulation

Emulation involves executing the shellcode in a simulated environment, such as QEMU or Unicorn, to
study its behavior without risking compromise of a real system.

Hands-on Exercises
Now that you have learned about script-based exploits and shellcode analysis, try these hands-on
exercises to reinforce your understanding and improve your skills.

Exercise: Identifying Script-Based Exploits

1. Download a sample of potentially malicious scripts
2. Perform static and dynamic analysis on each script to identify potential exploits
3. Document your findings and provide recommendations for mitigation

Exercise: Shellcode Disassembly

1. Download a sample of shellcode
2. Use a disassembler, such as IDA Pro, Ghidra, or Radare2, to convert the shellcode into assembly

language
3. Analyze the disassembled code to determine its functionality

Exercise: Debugging Shellcode

1. Download a sample of shellcode
2. Load the shellcode into a debugger, such as GDB or OllyDbg
3. Step through the code to observe its behavior and identify its purpose

Exercise: Shellcode Emulation

1. Download a sample of shellcode
2. Execute the shellcode in an emulator, such as QEMU or Unicorn
3. Analyze the emulated shellcode's behavior to determine its functionality and potential impact

Exercise: Creating a Shellcode Signature

1. Based on your analysis of the shellcode samples in Exercises 8.4.2, 8.4.3, and 8.4.4, identify
common patterns or signatures

2. Create a custom signature for an Intrusion Detection System (IDS) or antivirus software to
detect the analyzed shellcode

3. Test the effectiveness of your signature using a test environment with IDS or antivirus software

Automation of Script-Based Malware Analysis
As the volume and complexity of malware continue to increase, automation has become essential for
efficient and effective malware analysis. We will explore various techniques and tools for automating
the analysis of script-based malware and provide hands-on examples and exercises to help you develop
a deep understanding of these important skills.

258

Benefits of Automation in Malware Analysis
Automating malware analysis offers several benefits, including:

▪ Faster analysis: Automation can analyze a large number of samples in a short amount of time.
▪ Consistency: Automated analysis ensures consistent results across different samples.
▪ Scalability: Automated analysis can easily scale to handle large volumes of malware samples.
▪ Reducing human error: Automation minimizes the risk of human error in the analysis process.

Techniques for Automating Malware Analysis
The following are common techniques used for automating script-based malware analysis:

Static Analysis

Static analysis involves examining the script's source code without executing it. Automated static
analysis can identify potential vulnerabilities, such as hard-coded credentials, insecure functions, or
suspicious patterns.

Dynamic Analysis

Dynamic analysis involves executing the script in a controlled environment to observe its behavior.
Automated dynamic analysis can detect potentially malicious activities, such as unauthorized access
or unexpected network connections.

Behavioral Analysis

Behavioral analysis focuses on the actions taken by a script during execution, such as file system
changes or network connections. Automated behavioral analysis can help identify malicious behavior
patterns.

Tools for Automating Malware Analysis
There are several tools available for automating script-based malware analysis. Some popular tools
include:

▪ Cuckoo Sandbox: An open-source automated malware analysis system that can analyze
various types of malware, including script-based malware.

▪ YARA: A pattern-matching tool used to create custom signatures for detecting malware.
▪ Volatility: An advanced memory forensics framework used for analyzing memory dumps from

infected systems.
▪ Hybrid Analysis: A cloud-based malware analysis platform that supports automated static and

dynamic analysis.

Hands-on Exercises
Now that you have learned about automation in script-based malware analysis, try these hands-on
exercises to reinforce your understanding and improve your skills.

Exercise: Automated Static Analysis

1. Download a sample of potentially malicious scripts from [URL]
2. Use an automated static analysis tool, such as YARA, to analyze the scripts for potential

vulnerabilities
3. Document your findings and provide recommendations for mitigation

259

Exercise: Automated Dynamic Analysis

1. Download a sample of potentially malicious scripts from [URL]
2. Set up a controlled environment, such as Cuckoo Sandbox, for automated dynamic analysis
3. Analyze the scripts using the automated dynamic analysis tool and document the observed

behavior

Exercise: Automated Behavioral Analysis

1. Download a sample of potentially malicious scripts from [URL]
2. Use a behavioral analysis tool, such as Volatility, to analyze the scripts' actions during execution
3. Document your findings and provide recommendations for mitigation

Exercise: Creating Custom YARA Rules

1. Based on your analysis in Exercises 1, 2, and 3, identify common patterns or signatures among
the malware samples

2. Create custom YARA rules to detect the analyzed malware samples
3. Test the effectiveness of your custom YARA rules using a test environment with an Intrusion

Detection System (IDS) or antivirus software

