
1 

  



2 

Table of Contents 
Introduction to Python ............................................................................................................................ 4 

History of Python ................................................................................................................................ 4 

Why Choose Python? .......................................................................................................................... 4 

Python 2 vs Python 3 .......................................................................................................................... 5 

Installing Python ................................................................................................................................. 5 

First Python Program .......................................................................................................................... 5 

Variables .................................................................................................................................................. 7 

What is a Variable? ............................................................................................................................. 7 

Assigning Values to Variables .............................................................................................................. 7 

Data Types in Python .......................................................................................................................... 9 

Type Conversion ................................................................................................................................ 13 

Data Structures ..................................................................................................................................... 17 

Lists: Creation, Methods, and List Comprehensions ......................................................................... 17 

Tuples: Differences from Lists ........................................................................................................... 23 

Dictionaries: Creation, Methods, and Dictionary Comprehensions ................................................. 24 

Sets: Operations, Use-Cases .............................................................................................................. 28 

Basic Functions ...................................................................................................................................... 33 

Built-in Functions .............................................................................................................................. 33 

Print Function .................................................................................................................................... 37 

Slicing and Casting ................................................................................................................................. 40 

Basic String Operations ..................................................................................................................... 40 

String Methods (split, join, replace, etc.) .......................................................................................... 44 

String Formatting .............................................................................................................................. 49 

Loops ..................................................................................................................................................... 53 

The for Loop ...................................................................................................................................... 53 

The while Loop .................................................................................................................................. 56 

Loop Control Statements (break, continue, pass) ............................................................................. 58 

Nested Loops ..................................................................................................................................... 61 

Conditions ............................................................................................................................................. 62 

Boolean Expressions ......................................................................................................................... 62 

Comparison Operators ...................................................................................................................... 65 

Logical Operators .............................................................................................................................. 67 

The if, elif, and else Statements ........................................................................................................ 69 

Nested Conditions ............................................................................................................................. 71 

Input and Output .................................................................................................................................. 73 



3 

Reading input with input() ................................................................................................................ 73 

Writing output with print() ............................................................................................................... 75 

Reading and Writing Files.................................................................................................................. 77 

Working with File Modes .................................................................................................................. 80 

Error Handling ....................................................................................................................................... 83 

Common Python Errors ..................................................................................................................... 83 

The try, except Blocks ........................................................................................................................ 87 

The finally Block ................................................................................................................................ 90 

Raising Exceptions ............................................................................................................................. 92 

Modules ................................................................................................................................................ 94 

What is a Module? ............................................................................................................................ 94 

Importing Modules ........................................................................................................................... 94 

Common built-in Modules ................................................................................................................ 97 

Working with JSON, CSV ................................................................................................................. 100 

Functions ............................................................................................................................................. 102 

Defining a Function ......................................................................................................................... 102 

Function Parameters and Arguments ............................................................................................. 104 

Return Statement ............................................................................................................................ 107 

Variable Scope (local vs global) ....................................................................................................... 110 

Lambda Functions ........................................................................................................................... 112 

 
  



4 

Introduction to Python 
 
History of Python 
Python, a high-level, interpreted programming language, was conceived in the late 1980s by Guido van 
Rossum in the Netherlands. The language's inception was during the Christmas holidays of 1989, and 
its implementation began in December. Python was officially released as Python 0.9.0 in February 
1991. 
 
The name "Python" was inspired by the British comedy series "Monty Python's Flying Circus," a favorite 
of van Rossum. This influence can be seen in the playful approach to tutorials and reference materials, 
which often contain humorous examples. 
 

 
 
 
Python has seen multiple versions since its inception: 

• Python 1.0 (1994): The first official version. 
• Python 2.0 (2000): Introduced new features like garbage collection and Unicode support. The 

2.x series continued until 2.7. 
• Python 3.0 (2008): A major overhaul, it was designed to rectify fundamental design flaws. This 

version was not backward compatible with Python 2. 
 
 
Why Choose Python? 
Python has grown in popularity for several reasons: 

1. Readability: Python's syntax is clear and concise, which makes it easy to read and write. 
2. Versatility: It's used in web development, data analysis, artificial intelligence, scientific 

computing, and more. 
3. Community: A vast and active community means abundant resources, libraries, and 

frameworks. 
4. Open Source: Being open-source encourages collaboration and ensures the language is 

continually improving. 
5. Cross-Platform: Python is portable and can run on various operating systems. 

  



5 

Python 2 vs Python 3 
While both versions coexisted for a time, it's essential to understand their differences: 
 

• Print Statement vs. Function: In Python 2, print is a statement. In Python 3, it's a function: 
print(). 

• Integer Division: In Python 2, dividing two integers results in an integer. In Python 3, it results 
in a float. 

• Unicode Support: Python 3 supports Unicode by default, making it easier to work with non-
ASCII text. 

• Standard Library Changes: Some libraries in Python 2 were reorganized in Python 3, leading 
to different import paths. 

 
It's worth noting that Python 2 reached its end of life on January 1, 2020. This means no more updates, 
not even security patches. As such, it's recommended to use Python 3 for all new projects. 
 
 
Installing Python 
To install Python: 
 

1. Visit the Official Website: Go to Python's official website. 
2. Download the Installer: Choose the version suitable for your OS (Windows, macOS, Linux). 
3. Run the Installer: Follow the on-screen instructions. Ensure you check the box that says "Add 

Python to PATH" to access Python from the command line. 
4. Verify Installation: Open a terminal or command prompt and type python --version. This 

should display the installed Python version. 
 
 
First Python Program 
Once Python is installed, you can write your first program: 
 

1. Using the Interactive Shell: Open the Python shell by typing python in the command prompt 
or terminal. Then type print("Hello, World!") and press Enter. 

 

 
 
  

https://www.python.org/downloads/


6 

2. Using a Script: 
• Create a new file named hello.py. 
• Open it in a text editor and type print("Hello, World!"). 
• Save and close the file. 
• In the terminal or command prompt, navigate to the directory containing the file and 

type python hello.py. 
 

 
 
You should see the message "Hello, World!" displayed, indicating that your program ran successfully. 
 

  



7 

Variables 
 
What is a Variable? 
In programming, a variable is a symbolic name associated with a value. Think of it as a container or 
storage location that holds data. This data can be of various types, such as numbers, strings, lists, or 
more complex types. The primary purpose of a variable is to store information for later use, allowing 
for manipulation, retrieval, and other operations. 
 
Characteristics of Variables: 

1. Mutable: Variables can change their value over time. 
2. Typed: Every variable in Python has a data type, which determines the kind of value it can hold 

(e.g., integer, string, list). 
3. Identified by Name: Variables have unique names, often referred to as "identifiers," which are 

used to access their stored values. 
 
Example: 
Consider the analogy of a mailbox. A mailbox holds letters (data) and has a unique identifier (its 
address). Similarly, a variable holds data and has a unique name. 
 

 
 
In the above example, name and age are variables. The variable name holds the string "John Doe", 
and the variable age holds the number 30. 
 
 
Assigning Values to Variables 
Assigning a value to a variable is a fundamental operation in programming. In Python, the equals sign 
(=) is used for assignment. The variable name is placed on the left, and the value to be assigned is 
placed on the right. 
 
Basic Assignment: 
 

 
 
Assigns the integer value 5 to the variable x. 
Assigns the string "Hello, World!" to the variable greeting. 
 
  



8 

Multiple Assignment: 
Python allows you to assign values to multiple variables in a single line: 
 

 
 
This is equivalent to:  

▪ a = 5 
▪ b = 3.2 
▪ c = "Hello" 

 
 
Assigning the Same Value to Multiple Variables: 
You can also assign the same value to multiple variables: 
 

 
 
This is equivalent to: # x = 10 # y = 10 # z = 10  
 
 
Dynamic Typing: 
One of Python's features is dynamic typing, which means you don't have to declare a variable's type 
explicitly. The type is determined at runtime based on the assigned value: 
 

 
 
var = 10  # 'var' is an integer  
var = "Ten"  # Now, 'var' is a string  
 

  



9 

Data Types in Python 
In Python, every value has an associated data type. A data type defines the kind of value a variable can 
hold, such as integer, float, string, etc. Understanding these data types is crucial as they dictate the 
operations that can be performed on the values and how these values are stored in memory. 

 
Fundamental Data Types 
 
Integer (int) 
Integers are whole numbers, both positive and negative. 
 
Example: 
 

 
 
Output: <class 'int'>  
 
 
Floating Point (float) 
Floating-point numbers represent real numbers and are written with a decimal point. 
 
Example: 
 

 
  



10 

String (str) 
Strings are sequences of characters. In Python, strings can be enclosed in single ('), double ("), or triple 
(''' or """) quotes. 
 
Example: 
 

 
 
Output: <class 'str'>  
 
 
Boolean (bool) 
Booleans represent one of two values: True or False. 
 
Example: 
 

 
 
Output: <class 'bool'>  

 
  



11 

Compound Data Types 
 
 
List 
A list is an ordered collection of items, which can be of any type. Lists are mutable, meaning their 
content can change. 
 
Example: 
 

 
 
Output: <class 'list'>  
 
 
Tuple 
A tuple is similar to a list but is immutable, meaning its content cannot be changed after creation. 
 
Example: 
 

 
 
Output: <class 'tuple'>  
 
  



12 

Dictionary (dict) 
A dictionary is an unordered collection of key-value pairs. Keys must be unique. 
 
Example: 
 

 
 
Output: <class 'dict'>  
 
 
Set 
A set is an unordered collection of unique items. 
 
Example: 
 

 
 
Output:  

{'apple', 'banana', 'cherry'}  
<class 'set'>  

 

  



13 

Type Conversion 
Type conversion, often referred to as type casting, is the process of converting a value from one data 
type to another. In Python, while some conversions happen implicitly (automatic type conversion), 
there are times when you'll need to perform explicit type conversion to meet specific requirements. 

 
Implicit Type Conversion 
Python automatically converts one data type to another without the programmer's intervention in 
certain scenarios. This is known as implicit type conversion or coercion. 
 
Example: 
 

 
 

In the above example, the integer x is automatically converted to a float to perform the addition with 
another float y. 
 
 

Explicit Type Conversion 
When you manually change the data type of a value, it's called explicit type conversion. Python 
provides built-in functions for this purpose. 
 
 
int() 
Converts a value to an integer. It can't convert complex numbers or strings with non-numeric values. 
 
Example: 
 

 



14 

float() 
Converts a value to a floating-point number. 
 
Example: 
 

 
 
 
str() 
Converts a value to a string. 
 
Example: 
 

 
 
 
list() 
Converts a value to a list. 
 
Example: 
 

 



15 

tuple() 
Converts a value to a tuple. 
 
Example: 
 

 
 
 
set() 
Converts a value to a set. 
 
Example: 
 

 
 
 
dict() 
Converts a sequence of key-value pairs to a dictionary. 
 
Example: 
 

 



16 

Caution with Type Conversion 
While type conversion is powerful, it's essential to be cautious. Not all values can be converted to all 
data types. For instance, trying to convert a non-numeric string to an integer or float will raise an error. 
 
Example: 
 

 
 
This will raise a ValueError.  
 
 

  



17 

Data Structures 
 
Lists: Creation, Methods, and List Comprehensions 
In Python, a list is a mutable, ordered collection of items. Lists can contain elements of different data 
types, including other lists. Being one of the most versatile data structures in Python, lists find 
applications in numerous scenarios, from simple data storage to complex data manipulation tasks. 

 
Creating Lists 
 
 
Using Square Brackets 
The most common way to create a list is by enclosing a comma-separated sequence of values in square 
brackets []. 
 
Example: 
 

 
 
 
Using the list() Constructor 
You can also create a list using the list() constructor. 
 
Example: Creating a list from a tuple  
 

 
 
 
  



18 

List Methods 
Python lists come with a variety of built-in methods that allow for easy manipulation and querying. 
 
 
append() 
Adds an item to the end of the list. 
 
Example: 
 

 
 
Output: ['apple', 'banana', 'cherry']  
 
 
extend() 
Adds the elements of a list (or any iterable) to the end of the current list. 
 
Example: 
 

 
 
Output: ['apple', 'banana', 'cherry', 'date']  
  



19 

insert() 
Inserts an item at a specified position. 
 
Example: 
 

 
 
Output: ['apple', 'banana', 'cherry']  
 
 
remove() 
Removes the first occurrence of a specified item. 
 
Example: 
 

 
 
Output: ['apple', 'cherry']  
 
 
  



20 

pop() 
Removes and returns the item at a specified position. If no index is specified, it removes the last item. 
 
Example: 
 

 
 
Output: 'banana' print(fruits) # Output: ['apple', 'cherry']  
 
 
 
index() 
Returns the index of the first occurrence of a specified item. 
 
Example: 
 

 
 
Output: 1  
 
  



21 

count() 
Returns the number of occurrences of a specified item. 
 
Example: 
 

 
 
Output: 3  
 
 
 
sort() 
Sorts the list in ascending order. For descending order, you can use the reverse=True argument. 
 
Example: 
 

 
 
Output: [1, 2, 3, 4]  
 
  



22 

reverse() 
Reverses the order of the list. 
 
Example: 
 

 
 
Output: ['cherry', 'banana', 'apple']  
 
 
 

List Comprehensions 
List comprehensions provide a concise way to create lists based on existing lists or iterables. They can 
also incorporate conditionals, making them a powerful tool for list generation. 
 
Example: 
 

 
 
Output: [0, 1, 4, 9, 16]  
 
  



23 

Tuples: Differences from Lists 
In Python, a tuple is an ordered collection of items, similar to a list. However, unlike lists, tuples are 
immutable, meaning their content cannot be modified after creation. Tuples are often used to 
represent fixed collections of items or to ensure data integrity. 

 
Creating Tuples 
Tuples are created by enclosing a comma-separated sequence of values in parentheses (). 
 
Example: 
 

 
 
Note the trailing comma for single-element tuples. 
You can also create a tuple without parentheses, known as tuple packing: 
 

 
 

Differences Between Tuples and Lists 
 

1. Mutability: 
• List: Lists are mutable, meaning you can modify their content (add, remove, or change 

items). 
• Tuple: Tuples are immutable, meaning once they are created, you cannot modify their 

content. 
 

2. Syntax: 
• List: Lists are defined using square brackets []. 
• Tuple: Tuples are defined using parentheses (). 

 
3. Methods: 

• List: Lists have several built-in methods like append(), remove(), and extend(). 
• Tuple: Tuples have a limited set of methods. The most commonly used are count() and 

index(). 
 

4. Performance: 
• List: Due to their mutability, lists generally have a slightly larger memory overhead. 



24 

• Tuple: Tuples are more memory-efficient and can be faster for iteration due to their 
immutability. 
 

5. Use Cases: 
• List: Lists are more common for collections that might need to change over the lifetime 

of the program. 
• Tuple: Tuples are used when the data shouldn't change, such as representing fixed 

collections or as dictionary keys. 
 

 
When to Use Tuples 

1. Data Integrity: If you want to ensure data remains unchanged throughout the program, use a 
tuple. Its immutability guarantees the data's integrity. 
 

2. Dictionary Keys: Since dictionary keys need to be hashable and immutable, tuples can be used 
as dictionary keys, while lists cannot. 

 
3. Function Arguments and Return Values: Tuples are often used in function arguments and 

return values when a function needs to accept or return a fixed collection of items. 
 

4. Performance: If you're defining a constant set of values and all you're ever going to do is iterate 
through it, a tuple can be more efficient than a list. 
 
 

 
Dictionaries: Creation, Methods, and Dictionary Comprehensions 
In Python, a dictionary is an unordered collection of key-value pairs. Each key must be unique, and it 
can be of any immutable type, such as strings, numbers, or tuples. Dictionaries are mutable, which 
means you can add, remove, or modify key-value pairs. They are often used for tasks like data retrieval, 
where you can quickly find a value based on its key. 

 
Creating Dictionaries 
 
Using Curly Braces 
The most common way to create a dictionary is by enclosing a comma-separated sequence of key-
value pairs in curly braces {}. Key-value pairs are separated by colons. 
 
Example: 
 

 
 
  



25 

Using the dict() Constructor 
You can also create a dictionary using the dict() constructor. 
 
Example: 
 

 
 

Dictionary Methods 
Dictionaries in Python come with a variety of built-in methods for manipulation and querying. 
 
get() 
Returns the value for a given key. If the key is not found, it returns a default value. 
 
Example: 
 

 
 
keys() 
Returns a list of all the keys in the dictionary. 
 
Example: 
 

 



26 

values() 
Returns a list of all the values in the dictionary. 
 
Example: 
 

 
 
 
items() 
Returns a list of all the key-value pairs in the dictionary. 
 
Example: 
 

 
 
update() 
Merges a dictionary with another dictionary or with an iterable of key-value pairs. 
 
Example: 
 

 



27 

pop() 
Removes and returns the value for a given key. Raises a KeyError if the key is not found, unless a default 
value is provided. 
 
Example: 
 

 
 
clear() 
Removes all items from the dictionary. 
 
Example: 
 

 
 
Dictionary Comprehensions 
Dictionary comprehensions provide a concise way to create dictionaries. They are similar to list 
comprehensions but produce dictionaries. 
 

Example: 
 

 



28 

Sets: Operations, Use-Cases 
In Python, a set is an unordered collection of unique items. Sets are similar to lists and tuples but do 
not allow duplicate values. They are particularly useful for membership testing, eliminating duplicate 
entries, and performing mathematical set operations. 

 
Creating Sets 
Sets can be created using curly braces {} or the set() constructor. 
 
Example: 
 

 
 
Using the set() constructor 
Note: An empty set must be created using the set() constructor. Using {} creates an empty dictionary. 
 
 
 

Set Operations 
 
add() 
Adds an element to the set. 
 
Example: 
 

 
 
Output: {'apple', 'banana', 'cherry'}  
 
  



29 

remove() 
Removes a specified element from the set. Raises a KeyError if the element is not found. 
 
Example: 
 

 
 
Output: {'apple', 'cherry'}  
 
 
 
discard() 
Removes a specified element from the set. Does nothing if the element is not found. 
 
Example: 
 

 
 
Output: {'apple', 'cherry'}  
 
  



30 

pop() 
Removes and returns an arbitrary element from the set. Raises a KeyError if the set is empty. 
 
Example: 
 

 
 
Output can be 'apple', 'banana', or 'cherry' since sets are unordered. 
 
 
 
clear() 
Removes all elements from the set. 
 
Example: 
 

 
 
Output: set()  
 
  



31 

Mathematical Set Operations 
Python sets support various mathematical operations like union, intersection, difference, and 
symmetric difference. 
 
Example: 
 

 
 
 
Use-Cases for Sets 

1. Removing Duplicates: Since sets do not allow duplicate values, they can be used to remove 
duplicates from a list or other iterable. 

 
Example: 
 

 
 
Output: {1, 2, 3, 4, 5} 
 
  



32 

2. Membership Testing: Checking if an item exists in a set is faster than checking if it exists in a 
list or tuple. 

 
Example: 
 

 
 
Output: True 
 

3. Mathematical Operations: Sets can be used to perform mathematical set operations like 
union, intersection, and difference. 

 
Example: 
 

 
 
Output: {'Bob'}  
 

  



33 

Basic Functions 
 
Built-in Functions 
Python comes with a rich set of built-in functions that are always available for use without the need 
for any imports. These functions provide essential functionality and are optimized for performance, 
making them a fundamental part of the Python programming experience. 

 
Common Built-in Functions 
 
print() 
Displays the specified message or object to the console. 
 
Example: 
 

 
 
 
len() 
Returns the number of items in an object. 
 
Example: 
 

 
 
Output: 3  
 
 
  



34 

type() 
Returns the type of an object. 
 
Example: 
 

 
 
Output: <class 'int'>  
 
 
int(), float(), str() 
Converts a value to an integer, floating-point number, or string, respectively. 
 
Example: 
 

 
 
 
input() 
Reads a line from input and returns it as a string. 
 
Example: 
 

 
 



35 

 
 
 
list(), tuple(), set(), dict() 
Converts a value to a list, tuple, set, or dictionary, respectively. 
 
Example: 
 

 
 
Output: ['a', 'p', 'p', 'l', 'e']  
 
 
max() and min() 
Returns the largest or smallest item from an iterable or from two or more arguments. 
 
Example: 
 

 
 
Output:  

4  
1  

 
 
 
  



36 

range() 
Generates a sequence of numbers. 
 
Example: 
 

 
 
 
sorted() 
Returns a sorted list from the specified iterable. 
 
Example: 
 

 
 
Output: [1, 2, 3, 4]  
 
 
sum() 
Returns the sum of all items in an iterable. 
 
Example: 
 

 
 



37 

Print Function 
The print() function is one of the most frequently used built-in functions in Python. It allows developers 
to output data to the console, making it an invaluable tool for debugging, data display, and user 
interaction. 
 
Basic Usage of print() 
At its simplest, the print() function outputs the provided arguments to the console. 
 
Example: 
 
print("Hello, World!")  

 
 
Printing Multiple Arguments 
The print() function can accept multiple arguments and will concatenate them with a space by default. 
 
Example: 
 

 
 
Output: Name: Alice | Age: 30  

 
 
The sep Parameter 
The sep parameter defines the character or characters used to separate multiple arguments. By 
default, sep is set to a space. 
 
Example: 
 

 
  



38 

The end Parameter 
The end parameter specifies what to print at the end. By default, end is set to a newline character (\n), 
which means after the print() function is executed, the next print will be on a new line. 
 
Example: 
 

 
 
 

Printing Special Characters 
To print special characters, such as a double quote or a backslash, you can use escape sequences. 
 
Example: 
 

 
 
 
String Formatting with print() 
The print() function can be combined with string formatting techniques to produce formatted output. 
 
Example: 
 

 
 



39 

Using the format() method 
 
Example: 
 

 
 
Using %-formatting 
 
Example: 
 

 
  



40 

Slicing and Casting 
 
Basic String Operations 
Strings are among the most commonly used data types in Python. They are sequences of characters 
and can be manipulated in various ways to achieve desired results. 

 
String Concatenation 
Strings can be joined or concatenated using the + operator. 
 
Example: 
 

 
 
Output: John Doe  

 
 
String Repetition 
You can repeat a string a specified number of times using the * operator. 
 
Example: 
 

 
 
Output: Hello! Hello! Hello!  

 
 
  



41 

String Slicing 
Slicing allows you to extract a portion of a string. It's done by specifying a start index and an end index. 
The slice will include characters from the start index up to, but not including, the end index. 
 
Example: 
 

 
 
Output:  

Python 
programming  

 
 
 
String Length 
The len() function returns the number of characters in a string. 
 
Example: 
 

 
 
Output: 13  
 
 
  



42 

String Transformation 
Strings in Python come with built-in methods for common transformations. 
 
Uppercase and Lowercase 
 
Example: 
 

 
 
Output:  

PYTHON ROCKS  
python rocks  

 
 
 
Capitalization 
 
Example: 
 

 
 
Output:  

Python programming  
Python Programming  

 
 
  



43 

Searching in Strings 
 
find() and index() 
Both methods search for a substring and return the starting index of the first occurrence. While find() 
returns -1 if the substring is not found, index() raises a ValueError. 
 
Example: 
 

 
 
Output:  

10  
7  

 
 
count() 
Returns the number of occurrences of a substring. 
 
Example: 
 

 
 
Output: 2  
 
 

  



44 

String Methods (split, join, replace, etc.) 
Strings in Python are equipped with a variety of built-in methods that allow for efficient manipulation 
and transformation. These methods provide solutions for common tasks, making string handling in 
Python both powerful and user-friendly. 

 
The split() Method 
The split() method divides a string into a list based on a specified delimiter. 
 
Example: 
 

 
 
Output: ['apple', 'banana', 'cherry']  
 
 
By default, if no delimiter is specified, split() divides the string at each space. 
 

 
 
Output: ['Python', 'is', 'fun']  
 
 
  



45 

The join() Method 
The join() method combines a list of strings into a single string using a specified delimiter. 
 
Example: 
 

 
 
Output: apple, banana, cherry  
 
 
The replace() Method 
The replace() method replaces a specified substring with another substring. 
 
Example: 
 

 
 
Output: I love bananas  

 
 
  



46 

The startswith() and endswith() Methods 
These methods check if a string starts or ends with a specified substring, respectively, returning True 
or False. 
 
Example: 
 

 
 
Output:  

True  
False  

 
 
The strip(), rstrip(), and lstrip() Methods 
These methods remove whitespace characters (like spaces, tabs, and newlines) from the beginning 
and/or end of a string. 
 

• strip() removes from both ends. 
• lstrip() removes from the left. 
• rstrip() removes from the right. 

 
Example: 
 

 
 
  



47 

The upper(), lower(), capitalize(), and title() Methods 
These methods are used for case conversion. 
 
Example: 
 

 
 
Output:  

PYTHON PROGRAMMING  
python programming  
Python programming  
Python Programming  

 
 
 
The count() Method 
This method returns the number of occurrences of a specified substring in the given string. 
 
Example: 
 

 
 
Output: 2  

 
 
  



48 

The find() and index() Methods 
Both methods return the index of the first occurrence of a specified substring. If the substring is not 
found, find() returns -1, while index() raises a ValueError. 
 
Example: 
 

 
 
Output: 7  
 

 
 
This will raise a ValueError.  
 

  



49 

String Formatting 
String formatting is a powerful feature in Python that allows for the creation of strings by embedding 
expressions inside string literals. This capability is essential for tasks like data presentation, logging, 
and generating user-friendly messages. 

 
The % Operator 
One of the oldest ways to format strings in Python is using the % operator, reminiscent of the printf-
style string formatting found in languages like C. 
 
 
Basic Usage 
 
Example: 
 

 
 
Output: Hello, Alice!  
 
 
Multiple Substitutions 
 
Example: 
 

 
 
Output: Alice is 30 years old.  

 
 
  



50 

The str.format() Method 
Introduced in Python 2.6, the str.format() method offers more flexibility compared to the % operator. 
 
 
Basic Formatting 
 
Example: 
 

 
 
Output: Hello, Bob!  
 
 
Positional and Keyword Arguments 
 
Example: 
 

 
 
Output:  

Alice and Bob are friends.  
Charlie is 25 years old.  

 
 
  



51 

F-Strings (Formatted String Literals) 
Introduced in Python 3.6, f-strings offer a concise and convenient way to embed expressions inside 
string literals. 
 
Example: 
 

 
 
Output: Dave is 35 years old.  
Expressions inside the curly braces are evaluated at runtime. 

 
 

Formatting Numbers 
Python provides ways to format numbers as strings, which is particularly useful for displaying monetary 
values, percentages, or fixed decimal places. 
 
Using the % Operator 
 
Example: 
 

 
 
Output: The price is: $59.99  
 
 
  



52 

Using the str.format() Method 
 
Example: 
 

 
 
Output: The price is: $59.99  
 
 
Using F-Strings 
 
Example: 
 

 
 
Output: The price is: $59.99  

 
 
 

  



53 

Loops 
 
The for Loop 
The for loop in Python is a powerful control flow tool that allows developers to iterate over items in a 
sequence (such as a list, tuple, or string) or other iterable objects. 

 
Basic Structure of the for Loop 
The for loop works by iterating over each item in a sequence, executing a block of code for each item. 
 
Syntax: 
 
for item in sequence:  

# Code to execute for each item  

 
Iterating Over Lists 
One of the most common uses of the for loop is to iterate over lists. 
 
Example: 
 

 
 
 
Iterating Over Strings 
Strings are sequences of characters, so you can use a for loop to iterate over each character. 
 
Example: 
 

 
 



54 

The range() Function 
The range() function is often used with the for loop to generate a sequence of numbers. 
 
Syntax: 

• range(stop): Generates numbers from 0 up to (but not including) stop. 
• range(start, stop): Generates numbers from start up to (but not including) stop. 
• range(start, stop, step): Generates numbers from start up to (but not including) stop, 

incremented by step. 
 
Example: 
 

 
 
 
Nested for Loops 
You can nest for loops inside other for loops to create more complex iterations. 
 
Example: 
 

 
 
 
  



55 

The break and continue Statements 
 

• The break statement is used to exit the for loop prematurely. 
• The continue statement skips the rest of the current iteration and moves to the next one. 

 
Example: 
 

 
 
 
The else Clause in for Loops 
In Python, the for loop can have an optional else clause, which is executed after the loop finishes, but 
only if the loop wasn't terminated by a break statement. 
 
Example: 
 

 
 
Output: 

0  
1  
2  
3  
4  
Loop finished!  

 
 



56 

The while Loop 
The while loop in Python is used to repeatedly execute a block of code as long as a specified condition 
is True. Unlike the for loop, which runs a predetermined number of times based on a sequence, the 
while loop runs until its condition becomes False. 

 
Basic Structure of the while Loop 
The while loop tests a condition and executes its block of code if the condition is True. After each 
iteration, the condition is re-evaluated. 
 
Syntax: 
 
while condition:  

# Code to execute while condition is True  

 
 
Basic while Loop Example 
 
Example: 
 

 
 
Output: 

0  
1  
2  
3  
4  

 
 
Infinite while Loops 
If the condition in a while loop always evaluates to True, the loop will run indefinitely, creating an 
infinite loop. 
 
Example: 
 
# while True: 

# print("This will print forever!")  
 

It's crucial to ensure that the loop's condition will eventually become False to avoid unintentional 
infinite loops. 



57 

The break and continue Statements in while Loops 
• The break statement exits the while loop prematurely. 
• The continue statement skips the rest of the current iteration and returns to the loop's 

condition. 
 
Example: 
 

 
 
 
The else Clause in while Loops 
Similar to the for loop, the while loop in Python can also have an optional else clause. It is executed 
after the loop finishes, but only if the loop wasn't terminated by a break statement. 
 
Example: 
 

 
 
  



58 

Practical Applications of the while Loop 
The while loop is particularly useful in scenarios where the number of iterations is not known in 
advance, such as reading user input until a valid response is given. 
 
Example: 
 

 
 
 
 
Loop Control Statements (break, continue, pass) 
 
Introduction to Loop Control Statements 
Loop control statements modify the behavior of loops in Python. They allow developers to manage the 
flow of execution within loops, making them more dynamic and responsive to specific conditions. 

 
The break Statement 
The break statement is used to exit a loop prematurely, terminating its execution before it would 
naturally finish. 
 
Example: 
 

 
 
In the example above, the loop is terminated when i equals 3, and thus only the numbers 0, 1, and 2 
are printed. 

 
  



59 

The continue Statement 
The continue statement skips the current iteration of a loop and moves to the next one. It's useful for 
bypassing specific parts of the loop for certain conditions. 
 
Example: 
 

 
 
In the example above, the number 2 is skipped due to the continue statement, and the loop continues 
with the next iteration. 

 
 
The pass Statement 
The pass statement is a null operation — nothing happens when it's executed. It's often used as a 
placeholder, allowing developers to define a loop or a function syntactically but delay the 
implementation of its content. 
 
Example: 
 

 
 
In the example above, the pass statement serves as a placeholder for future code related to the 
condition i == 2. The loop continues to execute normally for all other values of i. 

 
 
  



60 

Combining Loop Control Statements 
Loop control statements can be combined in various ways to achieve more complex control flows 
within loops. 
 
Example: 
 

 
 
In the example above, the number 1 is skipped due to the continue statement, the loop is terminated 
when i equals 3 because of the break statement, and the pass statement serves as a placeholder for 
potential future code. 
 
 
Practical Applications of Loop Control Statements 
Loop control statements are invaluable when dealing with dynamic data or user input, where the 
behavior of the loop needs to adjust based on specific conditions. 
 
Example: 
Imagine a program that prompts users for input until they provide a valid response: 
 

 
 
In this example, the break statement ensures that the loop terminates once the user provides a valid 
input. 
 
 
  



61 

Nested Loops 
Nested loops refer to loops placed inside other loops. They allow developers to iterate over multiple 
dimensions or levels, making them essential for tasks like iterating over multi-dimensional arrays or 
generating patterns. 
 
Basics of Nested Loops 
A loop becomes nested when another loop is defined within its block of code. Both for and while loops 
can be nested within each other in any combination. 
 
Syntax: 
 

for outer_variable in outer_sequence:  
for inner_variable in inner_sequence:  

# Code to execute for each combination of outer and inner loop  
Example: 
 

 
 
 
Nested while Loops 
Just like for loops, while loops can also be nested to create more complex iterations. 
 
Example: 
 

 
  



62 

Conditions 
 
Boolean Expressions 
Boolean expressions are foundational to programming, allowing developers to make decisions and 
control the flow of execution. In Python, a boolean expression evaluates to one of two values: True or 
False. 
 

Basic Boolean Values 
In Python, the two boolean values are represented by the keywords True and False. 
 
Example: 
 

 
 
Comparison Operators 
Comparison operators are used to compare two values and return a boolean result. 
 

Operator Description Example Result 

== Equal to 5 == 3 False 

!= Not equal to 5 != 3 True 

> Greater than 5 > 3 True 

< Less than 5 < 3 False 

>= Greater than or equal 5 >= 5 True 

<= Less than or equal 5 <= 3 False 

 

Example: 
 

 



63 

Logical Operators 
Logical operators are used to combine multiple boolean expressions. 
 

Operator Description Example Result 

and Logical AND (5 > 3) and (5 > 4) True 

or Logical OR (5 > 3) or (5 < 4) True 

not Logical NOT not (5 > 3) False 

 
Example: 
 

 
 
 
The in and not in Operators 
These operators are used to test if a value is present in a sequence (like a list, tuple, or string). 
 
Example: 
 

 
 

 
  



64 

The is and is not Operators 
These operators compare the memory locations of two objects, not their content. They are used to 
check if two variables refer to the same object. 
 
Example: 
 

 
 
 

Truthy and Falsy Values 
In contexts where a boolean value is expected, Python will treat certain values as "truthy" (evaluating 
to True) and others as "falsy" (evaluating to False). 
 
Falsy values include: 

• None 
• False 
• Zero of any numeric type (0, 0.0, 0j, etc.) 
• Any empty sequence ([], (), "", etc.) 
• Any empty mapping ({}) 
• Custom objects that implement a __bool__() or __len__() method that returns False or 0, 

respectively. 
 
All other values are considered truthy. 
 
Example: 
 

 
 
 



65 

Comparison Operators 
Comparison operators are fundamental to programming, allowing developers to compare values and 
make decisions based on the results of those comparisons. In Python, comparison operators return a 
boolean value, either True or False, depending on the outcome of the comparison. 
 
 

List of Comparison Operators 
Here's a list of the primary comparison operators in Python: 
 

Operator Description 

== Equal to 

!= Not equal to 

> Greater than 

< Less than 

>= Greater than or equal 

<= Less than or equal 

 
 
Using the == and != Operators 
The == operator checks if two values are equal, while the != operator checks if they are not equal. 
 

Example: 
 

 
 

 
Using the >, <, >=, and <= Operators 
These operators are used to compare the magnitude of values. 
 

  



66 

Example: 
 

 
 

 
Comparing Different Data Types 
In Python, you can compare different data types. However, doing so can lead to unexpected results if 
not done with caution. 
 
Example: 
 

 
 

Chaining Comparison Operators 
Python allows for the chaining of comparison operators, which can lead to more concise and readable 
conditions. 
 

Example: 
 

 



67 

Logical Operators 
Logical operators are used to combine multiple conditions or boolean expressions, allowing developers 
to create more complex and nuanced decision-making structures in their programs. In Python, logical 
operators return a boolean value: True or False, based on the evaluation of the combined conditions. 

 
List of Logical Operators 
Here's a list of the primary logical operators in Python: 
 

Operator Description 

and Logical AND 

or Logical OR 

not Logical NOT 

 
 
The and Operator 
The and operator returns True if both the conditions it combines are true. Otherwise, it returns False. 
 
Example: 
 

 
 
The or Operator 
The or operator returns True if at least one of the conditions it combines is true. If both conditions are 
false, it returns False. 
 
Example: 
 

 
 



68 

The not Operator 
The not operator inverts the result of the condition it precedes. If the condition is True, not will return 
False, and vice versa. 
 
Example: 
 

 
 
 
Combining Logical Operators 
Logical operators can be combined to form more complex conditions. 
 
Example: 
 

 
 
 
  



69 

The if, elif, and else Statements 
 

Introduction to Conditional Statements 
Conditional statements are a cornerstone of programming, allowing developers to execute specific 
blocks of code based on whether certain conditions are met. In Python, the if, elif, and else statements 
provide a flexible framework for handling these conditions. 

 
The if Statement 
The if statement is used to test a condition and execute a block of code if that condition is True. 
 
Syntax: 
 
if condition: # code to execute if condition is True  
 
Example: 
 

 
 
The else Statement 
The else statement follows an if statement and defines a block of code to be executed if the condition 
in the if statement is False. 
 
Syntax: 
 
if condition: # code to execute if condition is True else: # code to execute if condition is False  
 
Example: 
 

 



70 

The elif Statement 
The elif (short for "else if") statement allows for checking multiple conditions in sequence. If the 
condition in an if statement is False, the elif condition is checked next. You can have multiple elif 
statements to handle various conditions. 
 

Syntax: 
 

if condition1: # code to execute if condition1 is True elif condition2: # code to execute if condition2 is 
True else: # code to execute if no conditions are True  
 

Example: 
 

 
 
 
Nested Conditional Statements 
You can nest if statements within other if, elif, or else blocks, allowing for more complex decision-
making structures. 
 
Example: 
 

 
 
 
  



71 

Nested Conditions 
Nested conditions refer to conditional statements placed inside other conditional statements. This 
allows for more intricate decision-making structures, enabling developers to test multiple conditions 
in a hierarchical manner. 
 
Basics of Nested Conditions 
A nested condition arises when an if, elif, or else statement contains another if or elif statement within 
its block of code. 
 
Syntax: 
 
if outer_condition: # Outer condition code  

if inner_condition: # Inner condition code  

 
 
Using Nested if Statements 
Nested if statements allow for checking a secondary condition only if the primary condition is met. 
 
Example: 
 

 
 

 
Combining Nested Conditions with elif and else 
You can combine nested conditions with elif and else statements for more complex decision-making 
structures. 
 

  



72 

Example: 
 

 
 
Practical Applications of Nested Conditions 
Nested conditions are particularly useful in scenarios where decisions depend on a series of criteria 
being met. 
 
Example: 
Imagine an application process where an applicant must be over 18 and must also pass a test to qualify: 
 

 

  



73 

Input and Output 
 
Reading input with input() 
In Python, the input() function is a built-in function used to read input from the user. Whether you're 
building interactive scripts or simple command-line tools, understanding how to effectively use input() 
is crucial. 

 
Basics of the input() Function 
The input() function reads a line from the input (usually from the user's keyboard) and returns it as a 
string (excluding the trailing newline). 
 
Syntax: input([prompt])  
 
Where prompt is an optional parameter that specifies a message to display before reading the input. 

 
Simple input() Example 
 
Example: 
 

 
 
In this example, the program prompts the user to enter their name and then prints a greeting using 
the provided name. 
 

 
 
Type Conversion with input() 
Since the input() function always returns a string, it's often necessary to convert this string to other 
data types, such as integers or floats, especially when dealing with numerical input. 
 
Example: 
 

 



74 

In the example above, the user's age is read as a string and then converted to an integer using the int() 
function. 
 

 
 
Handling Invalid Input 
When reading input from users, there's always a chance they might provide invalid data. It's essential 
to handle such scenarios gracefully. 
 
Example: 
 

 
 
In this example, the program keeps prompting the user for their age until they provide a valid integer. 
If the conversion to an integer fails, a ValueError exception is raised, and the user is informed of the 
error. 
 

 
 

 
  



75 

Using input() with Different Data Types 
The input() function can be combined with various data type conversions to read different kinds of 
input. 
 
Example: 
 

 
 

 
 
 
Security Considerations with input() 
In older versions of Python (2.x), there was a function called raw_input() which behaved like Python 
3's input(). However, Python 2 also had a function called input() which evaluated the user's input as 
Python code. This could lead to potential security issues. In Python 3, this behavior was removed, and 
the input() function always returns user input as a string, making it safer. 
 
 
Writing output with print() 
The print() function is one of the most frequently used functions in Python. It provides a way to display 
information to the user, making it essential for debugging, data visualization, and user interaction.  
 
Basics of the print() Function 
The primary purpose of the print() function is to display text to the console. By default, it outputs text 
followed by a newline. 
 
Syntax: 
 
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)  

• objects: The values to be printed. 
• sep: Separator between values (default is a space). 
• end: Specifies what to print at the end (default is a newline). 
• file: The file where the values are printed (default is sys.stdout which means the console). 
• flush: Whether to flush the output buffer (default is False). 

 



76 

Using Separators and End Arguments 
The sep and end arguments allow for customization of the output format. 
 
Example: 
 

 
 
 
Printing Multiple Objects 
You can print multiple objects of different data types in a single print() call. 
 
Example: 
 

 
 
 
Redirecting Output to a File 
Using the file argument, you can redirect the output of the print() function to a file. 
 
Example: 
 

 
In this example, the text is written to output.txt instead of being displayed on the console. 
 



77 

Reading and Writing Files 
File handling is a fundamental aspect of many applications, allowing for data persistence, logging, 
configuration, and more. Python provides built-in functions and methods to read from and write to 
files with ease. 

 
Opening Files 
The open() function is used to open a file and returns a file object. It takes two main arguments: the 
filename and the mode. 
 
Syntax: 
 
open(filename, mode)  
 
Common modes include: 

• 'r': Read (default) 
• 'w': Write (overwrites the file) 
• 'a': Append (adds to the end of the file) 
• 'b': Binary mode 

 
Reading from Files 
Once a file is opened in read mode, you can read its contents using various methods. 
 
Example: 
 

 
 
The with statement ensures that the file is properly closed after its suite finishes. 
Writing to Files 
To write to a file, you open it in write or append mode and use the write() method. 
 
Example: 
 

 
 
This will create (or overwrite) output.txt and write "Hello, World!" to it. 

 
 
  



78 

Reading Lines 
Files can be read line-by-line using the readline() method or by iterating over the file object. 
 
Example: 
 

 
 
Working with Binary Files 
To read or write binary data, use the 'b' mode with 'r' or 'w'. 
 
Example: 
 

 
 
File Positions 
The tell() method returns the current file position, and the seek(offset) method changes the file 
position. 
 
Example: 
 

 
 
  



79 

Handling File Exceptions 
It's crucial to handle potential file exceptions, such as FileNotFoundError. 
 
Example: 
 

 
 
 
Closing Files 
While the with statement automatically closes files, if you open a file without it, you should close it 
using the close() method. 
 
Example: 
 

 
 
 
  



80 

Working with File Modes 
In Python, when working with files, the mode in which you open a file is crucial. It determines whether 
you can read from, write to, or both read and write to the file. It also affects how the file pointer 
behaves and how the file's content is treated (e.g., text vs. binary). 

 
Overview of File Modes 
The open() function in Python accepts a mode parameter, which determines the mode in which the 
file is opened. Here are the primary file modes: 
 

• 'r': Read mode (default) 
• 'w': Write mode 
• 'a': Append mode 
• 'x': Exclusive creation mode 
• 'b': Binary mode 
• 't': Text mode (default) 

 
 
Read Mode ('r') 
Opens the file for reading (default). If the file does not exist, it raises a FileNotFoundError. 
 
Example: 
 

 
 
Write Mode ('w') 
Opens the file for writing. If the file already exists, it truncates (deletes) its content. If the file does not 
exist, it creates a new file. 
 
Example: 
 

 
 
  



81 

Append Mode ('a') 
Opens the file for writing, but it appends to the end of the file instead of truncating it. If the file does 
not exist, it creates a new file. 
 
Example: 
 

 
 
 
Exclusive Creation Mode ('x') 
Opens the file for exclusive creation. If the file already exists, the operation will fail with a 
FileExistsError. This mode is useful when you want to ensure that you're not overwriting an existing 
file. 
 
Example: 
 

 
 
  



82 

Binary Mode ('b') 
Opens the file in binary mode, rather than text mode. This mode is used for non-text files like images, 
audio files, etc. 
 
Example: 
 

 
 
 
Text Mode ('t') 
Opens the file in text mode (default). In this mode, Python handles encoding and decoding of data and 
translates line endings (\n). 
 
Example: 
 

 
 
 
Combining Multiple Modes 
You can combine multiple modes by stringing them together. For instance, 'rb' means to open the file 
in both read and binary modes. 
 
Example: 
 

 
 



83 

Error Handling 
 
Common Python Errors 
Errors are inevitable in the programming world. Whether you're a beginner or an experienced 
developer, you'll encounter errors in your code. Understanding common Python errors and their 
causes can help you debug your code more efficiently. 

 
SyntaxError 
A SyntaxError is raised when the Python parser encounters incorrect syntax. 
 
Example: 
 

 
 
Explanation: The string is missing a closing quotation mark, leading to a syntax error. 

 
NameError 
A NameError is raised when a variable or function name is used but not defined. 
 
Example: 
 

 
Explanation: The variable variable_does_not_exist has not been defined before its use. 
TypeError 
 
  



84 

A TypeError is raised when an operation or function is applied to an object of an inappropriate type. 
 
Example: 
 

 
 
Explanation: You cannot add a string and an integer directly. 

 
 
ValueError 
A ValueError is raised when a function receives an argument of the correct type but an inappropriate 
value. 
 
Example: 
 

 
 
Explanation: The int() function expects a string that can be converted to an integer. The string "Python" 
cannot be converted to an integer. 

 
  



85 

IndexError 
An IndexError is raised when you try to access an index that does not exist in a sequence, like a list or 
tuple. 
 
Example: 
 

 
 
Explanation: The list has indices 0, 1, and 2. Index 3 does not exist. 
 
 
KeyError 
A KeyError is raised when you try to access a dictionary key that does not exist. 
 
Example: 
 

 
 
Explanation: The key "age" does not exist in the dictionary. 

 
 
  



86 

AttributeError 
An AttributeError is raised when you try to access an attribute or method that does not exist for a 
particular object. 
 
Example: 
 

 
 
Explanation: Integers do not have an append method. 

 
 
ZeroDivisionError 
A ZeroDivisionError is raised when you try to divide a number by zero. 
 
Example: 
 

 
 
Explanation: Division by zero is mathematically undefined. 

 
 
  



87 

ImportError 
An ImportError is raised when you try to import a module or function that does not exist. 
 
Example: 
 

 
 
Explanation: The module non_existent_module does not exist. 
 
 
 
The try, except Blocks 
In programming, exceptions are events that can disrupt the normal flow of a program. Python provides 
a mechanism to handle exceptions gracefully using the try and except blocks. This allows developers 
to respond to errors in a controlled manner, ensuring that the program can continue running or 
terminate gracefully. 

 
The try Block 
The try block is used to enclose a section of code that might raise an exception. It allows developers 
to "try" to execute a block of code and catch any exceptions that arise. 
 
Syntax: 
 

try: # Code that might raise an exception  
 
The except Block 
The except block follows the try block and is used to catch and handle exceptions. If an exception 
occurs in the try block, the code in the except block is executed. 
 
Syntax: 
 

try: # Code that might raise an exception except  
ExceptionType: # Code to handle the exception  

 
 
  



88 

Basic try, except Example 
 
Example: 
 

 
 
In the example above, a ZeroDivisionError is raised in the try block, and the corresponding except 
block handles it by printing an error message. 

 
 
Handling Multiple Exceptions 
You can have multiple except blocks to handle different types of exceptions. 
 
Example: This is just an example, the list and the string can be replaced by any other objects 
 

 
 
Output: 
 
List index out of range.  
  



89 

Catching All Exceptions 
If you want to catch all exceptions, regardless of their type, you can use a general except block without 
specifying an exception type. 
 
Example: 
 

 
 
Output: An error occurred!  
 
However, it's generally a good practice to specify the exact exceptions you're expecting to handle to 
avoid masking unexpected issues. 

 
 
The else Block in Exception Handling 
The else block can be used in conjunction with try and except. It is executed if no exceptions occur in 
the try block. 
 
Example: 
 

 
 
Output: The result is 5.0.  
 
 
  



90 

The finally Block 
In the realm of exception handling, the finally block holds a special place. It is designed to house code 
that must be executed regardless of whether an exception was raised or not. 

 
Purpose of the finally Block 
The primary purpose of the finally block is to ensure that specific code runs no matter what — whether 
an exception occurs or not. This is particularly useful for cleanup actions, such as closing files or 
releasing resources. 

 
Basic Structure of the finally Block 
The finally block follows the try and except blocks and is always executed. 
 
Syntax: 
 
try: # Code that might raise an exception except ExceptionType: # Code to handle the exception finally: 
# Code to be executed regardless of exceptions  

 
Basic finally Block Example 
 
Example: 
 

 
 
Output: 
 

You cannot divide by zero!  
This will always be printed.  

 
In the example above, even though a ZeroDivisionError is raised, the finally block ensures that its code 
is executed. 

 
  



91 

Using finally with else 
The finally block can also be used in conjunction with the else block. 
 
Example: 
 

 
 
Output: 

The result is 5.0.  
This will always be printed.  

 
 
Practical Applications of the finally Block 
 

1. Resource Cleanup: Ensuring that resources like files or network connections are closed 
properly. 

 
Example: 
 

 
 

2. Resetting States: If a piece of code changes a global state or configuration, the finally block 
can be used to reset or revert those changes. 



92 

3. Logging: Logging information about code execution, errors, or other events for debugging or 
audit purposes. 

 
 
Raising Exceptions 
While handling exceptions is crucial, there are times when developers need to raise exceptions 
intentionally, signaling that an error condition has occurred. 

 
Why Raise Exceptions? 
Raising exceptions intentionally can be beneficial for several reasons: 
 

1. Error Reporting: To notify other parts of the program that something unexpected has 
occurred. 

2. Input Validation: To ensure that functions and methods are used correctly. 
3. Fail Fast: To stop the program immediately when an unrecoverable error is detected, making 

it easier to debug. 
 
 
The raise Statement 
The raise statement is used to raise an exception in Python. You can raise a specific exception and 
provide a custom error message. 
 
Syntax: 
 
raise ExceptionType("Error Message")  

 
 
Basic Example of Raising an Exception 
 
Example: 
 

 
 
In the example above, the validate_age function raises a ValueError if the provided age is negative. 
Re-raising Exceptions 
  



93 

In some scenarios, you might want to catch an exception, perform some operations, and then re-raise 
the same exception. You can do this using the raise statement without an argument inside an except 
block. 
 
Example: 
 

 
 
Output: 
 

Logging the error...  
ZeroDivisionError: division by zero  

 
 
 
 

  



94 

Modules 
 
What is a Module? 
In the vast world of programming, organization and code reusability are paramount. Python addresses 
this by introducing the concept of modules. 

 
Definition of a Module 
A module in Python is a file containing Python definitions and statements. The file name is the module 
name with the suffix .py added. Modules allow for logical organization of code, promoting code 
reusability and maintainability. 

 
Why Use Modules? 
Modules offer several benefits: 
 

1. Code Reusability: Write once, use everywhere. Functions, classes, or variables defined in a 
module can be reused across multiple programs. 

2. Logical Structuring: Modules help in organizing related code into separate files, making the 
codebase more manageable. 

3. Namespace Avoidance: Modules help avoid naming conflicts by providing a separate 
namespace for identifiers. 

 
 
Importing Modules 
Modules enhance the functionality of Python by allowing developers to use pre-defined functions, 
classes, and variables. However, to leverage these functionalities, one must first understand how to 
import them into their programs. 

 
Basic Module Import 
The simplest way to import a module is using the import statement followed by the module name. 
 
Example: 
 

 
 
Output: 5.0  
Here, the math module is imported, and its sqrt function is used. 
  



95 

Importing Specific Attributes 
Instead of importing an entire module, you can choose to import only specific attributes (functions, 
classes, variables) using the from ... import ... statement. 
 
Example: 
 

 
 
Renaming Modules or Attributes on Import 
For convenience or to avoid naming conflicts, you can rename a module or its attributes when 
importing. 
 
Example: 
 

 
 

Importing All Attributes from a Module 
While not recommended due to potential naming conflicts, you can import all attributes from a 
module using the * wildcard. 
 

Example: 
 

 



96 

The importlib Module 
Python provides the importlib module, which contains functions to import modules programmatically. 
 
Example: 
 

 
 
Output: 5.0  

 
 
Module Search Path 
When a module is imported, Python searches for it in a list of directories defined in sys.path. This list 
typically includes the current directory, directories listed in the PYTHONPATH environment variable, 
and standard library directories. 
 
Example: 
 

 
 
To add a new directory to the search path: 
 

 



97 

Common built-in Modules 
Python's standard library is vast, offering a wide range of modules that provide utilities, data 
structures, and tools for various tasks. 

 
 
The math Module 
The math module provides mathematical functions and constants. 
 
Example: 
 

 
 
 
The datetime Module 
The datetime module supplies classes to work with date and time. 
 
Example: 
 

 
 
  



98 

The os Module 
The os module provides a way to use operating system-dependent functionalities. 
 
Example: 
 

 
 
 
 
The sys Module 
The sys module provides access to Python interpreter variables and functions. 
 
Example: 
 

 
 
 
  



99 

The hashlib Module 
The hashlib module provides algorithms for message digests (hashing). 
 
Example: 
 

 
 
 
The random Module 
The random module provides functions to generate random numbers. 
 
Example: 
 

 
 
 



100 

Working with JSON, CSV 
While plain text files are common and straightforward, many applications require more structured data 
formats like JSON and CSV. Python provides built-in libraries to handle these formats, making it easy 
to read from and write to such files. 

 
Working with JSON in Python 
JSON (JavaScript Object Notation) is a lightweight data-interchange format that is easy for humans to 
read and write and easy for machines to parse and generate. 
 
The json Module 
Python includes the json module in its standard library, which provides methods to encode and decode 
JSON data. 
 
Reading JSON Data 
To parse JSON data in Python, you can use the json.load() method for files or json.loads() for strings. 
 
Example: 
 

 
 
 
Writing JSON Data 
To write JSON data, you can use the json.dump() method for files or json.dumps() for strings. 
 
Example: 
 

 



101 

Working with CSV in Python 
CSV (Comma-Separated Values) is a simple file format used to store tabular data, such as spreadsheets 
and databases. 
 
The csv Module 
Python's standard library includes the csv module, which provides functionality to read from and write 
to CSV files. 
 
 
Reading CSV Data 
The csv.reader() function allows you to read CSV files. 
 
Example: 
 

 
 
 
Writing CSV Data 
To write data to a CSV file, you can use the csv.writer() function. 
 
Example: 
 

 
 
File Output: 
 

 
  



102 

Functions 
 
Defining a Function 
Functions are the building blocks of a program, allowing for code modularity, reusability, and 
organization. In Python, functions are first-class citizens, meaning they can be passed around and used 
as arguments just like any other object. 

 
What is a Function? 
A function is a block of organized, reusable code that performs a specific task. Functions provide better 
modularity for your application and allow for high levels of code reuse. 

 
 
Basic Function Definition 
In Python, a function is defined using the def keyword, followed by the function name, a pair of 
parentheses, and a colon. The function body starts after the colon and is indented. 
Syntax: 
 
def function_name():  

# function body pass  
 
Example: 
 

 
 
Function Parameters 
Functions can take arguments, which are values you supply to the function so it can perform an action 
based on those values. These arguments are called parameters. 
 
Example: 
 

 



103 

Default Parameter Values 
You can provide default values for function parameters. If a value for that parameter is not provided 
when the function is called, the default value is used. 
 
Example: 
 

 
 
Output:  

Hello, World!  
Hello, Alice!  

 
 
Return Values 
Functions can return values using the return statement. Once a function returns a value, it immediately 
exits and does not execute any code that follows. 
 
Example: 
 

 
 
 
 
  



104 

Function Parameters and Arguments 
Function parameters and arguments are fundamental concepts in Python, allowing developers to 
create flexible and reusable functions. 

 
Basic Parameters and Arguments 
Parameters are the names listed in the function definition, while arguments are the values passed into 
the function when it is called. 
 
Example: 
 

 
 
 
Positional Arguments 
Positional arguments are arguments that need to be passed in the same order as the parameters in 
the function definition. 
 
Example: 
 

 
 
 
 
  



105 

Default Parameter Values 
You can assign default values to parameters, making them optional when calling the function. 
 
Example: 
 

 
 
Output:  

Hello, World!  
Hello, Alice!  

 
 
Keyword Arguments 
Keyword arguments allow you to pass arguments out of order by specifying their names. 
 
Example: 
 

 
 
Order doesn't matter when using keyword arguments. 
 
 
Arbitrary Positional Arguments (*args) 
If you're unsure about the number of positional arguments that will be passed to a function, you can 
use *args to capture them as a tuple. 
 
  



106 

Example: 
 

 
Arbitrary Keyword Arguments (**kwargs) 
For an unknown number of keyword arguments, use **kwargs to capture them as a dictionary. 
 
Example: 
 

 
 

Mixing Argument Types 
You can mix positional, *args, keyword, and **kwargs arguments in a function definition. However, 
the order should be: standard positional arguments, *args, standard keyword arguments, **kwargs. 
 

Example: 
 

 



107 

Passing Lists and Dictionaries as Arguments 
You can unpack and pass lists and dictionaries as function arguments using * and **, respectively. 
 
Example: 
 

 
 
 
 
Return Statement 
The return statement is a fundamental aspect of functions in Python, allowing developers to send 
results back from a function to the point where the function was called. 

 
Basics of the Return Statement 
The return statement is used to exit a function and send a result back to the caller. Once a return 
statement is executed, no other code within the function is run. 
 
Example: 
 

 
 
  



108 

Returning Multiple Values 
A function in Python can return multiple values in the form of a tuple, list, dictionary, or any other 
collection type. 
 
Example: 
 

 
 
Output:  

12  
 
 
The Implicit Return 
If a function doesn't have a return statement, it implicitly returns None. 
 
Example: 
 

 
 
Output of print(result): None 
 
 
  



109 

Conditional Return 
You can have multiple return statements in a function, typically used in conjunction with conditional 
statements. 
 
Example: 
 

 
 
 
Return Statement with Recursive Functions 
Recursive functions are functions that call themselves. The return statement plays a crucial role in 
ensuring that recursive functions produce the desired output and eventually terminate. 
 
Example: 
 

 
 
Output: 120  
 
  



110 

Variable Scope (local vs global) 
In Python, as in many programming languages, variables have a "scope" that determines their visibility 
and lifespan within a program. 
 
What is Variable Scope? 
Variable scope refers to the region of the code where a variable can be accessed or modified. The two 
primary types of variable scopes in Python are "local" and "global." 
 
Local Scope 
A variable declared within a function has a local scope. It's accessible only inside that function and not 
outside it. 
 
Example: 
 

 
 

 

Global Scope 
A variable declared outside all functions has a global scope. It's accessible throughout the file, including 
inside functions (unless shadowed by a local variable with the same name). 
 
Example: 
 

 
  



111 

The global Keyword 
If you need to modify a global variable from within a function, you can use the global keyword. 
 
Example: 
 

 
 
Without the global keyword, the function would create a local variable named count, and the global 
count would remain unchanged. 
 
 
Shadowing 
If a local variable has the same name as a global variable, the local variable will "shadow" the global 
one within its scope. 
 
Example: 
 

 
 
 
  



112 

Best Practices 
 

1. Avoid Global Variables: While global variables can be convenient, they can make code harder 
to understand and debug. It's generally better to pass variables as function parameters 
instead. 
 

2. Be Careful with Shadowing: Shadowing can make code confusing. It's often better to use 
unique variable names to avoid this issue. 

 
3. Limit Use of global and nonlocal: While these keywords can be useful, overusing them can 

make code harder to follow. 
 
 
Lambda Functions 
Lambda functions, often referred to as "anonymous functions," are a unique and powerful feature of 
Python. They allow for the creation of simple functions in a concise manner. 
 
What is a Lambda Function? 
A lambda function is a small, unnamed function defined using the lambda keyword. Unlike regular 
functions defined using the def keyword, lambda functions can have any number of arguments but 
only one expression. 
 
Basic Syntax of Lambda Functions 
The general syntax of a lambda function is: 
 
lambda arguments: expression  
The expression is executed and returned when the lambda function is called. 
 
Basic Example 
Here's a simple example of a lambda function that adds two numbers: 
 

 
 
Output: 8  
 
 
  



113 

Lambda Functions with Multiple Arguments 
Lambda functions can accept any number of arguments: 
 

 
 
Output: 24  

 
 
Using Lambda Functions with Built-in Functions 
Lambda functions are commonly used with built-in functions like map(), filter(), and sorted(). 
 
Example with map(): 
 

 
 
 
Example with filter(): 
 

 
  



114 

Lambda Functions for Sorting 
Lambda functions are particularly useful for custom sorting. 
 
Example: 
 

 
 
Output: [('banana', 1), ('cherry', 2), ('apple', 3)]  
 
 
Limitations of Lambda Functions 
While lambda functions are powerful, they have some limitations: 
 

1. Single Expression: Lambda functions can only have one expression, which means they can't 
contain multiple statements or assignments. 

2. Less Readable: For complex operations, lambda functions can be less readable than regular 
functions. 

3. Limited Functionality: Without the ability to include statements, certain operations can't be 
performed within a lambda. 

 
 
When to Use Lambda Functions 
Lambda functions are best suited for simple operations that can be expressed in a single expression. 
They're especially useful when you need a short-lived function for a specific task, like with map(), 
filter(), or sorted(). 
 


